
CSMC 412

Operating Systems

Prof. Ashok K Agrawala

© 2019   Ashok Agrawala

February 20 1



Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Threads & Concurrency 



Threads

• Overview

• Multicore Programming

• Multithreading Models

• Thread Libraries

• Implicit Threading

• Threading Issues

• Operating System Examples

February 20 Copyright 2018 Silberschatz, Gavin & Gagne 3



Objectives
• To introduce the notion of a thread—a 

fundamental unit of CPU utilization that 
forms the basis of multithreaded computer 
systems

• To discuss the APIs for the Pthreads, 
Windows, and Java thread libraries

• To explore several strategies that provide 
implicit threading

• To examine issues related to multithreaded 
programming

• To cover operating system support for threads 
in Windows and Linux

February 20 Copyright 2018 Silberschatz, Gavin & Gagne 4



Process

PC

…

Address Space

February 20 Copyright 2018 Silberschatz, Gavin & Gagne 5



Process Control Block (PCB)

Information associated with each process 
(also called task control block)
• Process state – running, waiting, etc
• Program counter – location of 

instruction to next execute
• CPU registers – contents of all process-

centric registers
• CPU scheduling information- priorities, 

scheduling queue pointers
• Memory-management information –

memory allocated to the process
• Accounting information – CPU used, 

clock time elapsed since start, time 
limits

• I/O status information – I/O devices 
allocated to process, list of open files

February 20 Copyright 2018 Silberschatz, Gavin & Gagne 6



Multiple Processors

February 20 Copyright 2018 Silberschatz, Gavin & Gagne 7

GPRs

CACHE

GPRs

CACHE

CPU A CPU B

Memory



Threads

February 20 Copyright 2018 Silberschatz, Gavin & Gagne 8

GPRs

CACHE

PC

GPRs

CACHE

PC

CPU A

CPU B

Address Space



Motivation

• Most modern applications are multithreaded
• Threads run within application
• Multiple tasks with the application can be 

implemented by separate threads
– Update display
– Fetch data
– Spell checking
– Answer a network request

• Process creation is heavy-weight while thread 
creation is light-weight

• Can simplify code, increase efficiency
• Kernels are generally multithreaded

February 20 Copyright 2018 Silberschatz, Gavin & Gagne 9



Multithreaded Server Architecture

February 20 Copyright 2018 Silberschatz, Gavin & Gagne 10



Benefits

• Responsiveness – may allow continued 
execution if part of process is blocked, 
especially important for user interfaces

• Resource Sharing – threads share resources of 
process, easier than shared memory or 
message passing

• Economy – cheaper than process creation, 
thread switching lower overhead than context 
switching

• Scalability – process can take advantage of 
multiprocessor architectures

February 20 Copyright 2018 Silberschatz, Gavin & Gagne 11



Multicore Programming

• Multicore or multiprocessor systems putting pressure 
on programmers, challenges include:
– Dividing activities
– Balance
– Data splitting
– Data dependency
– Testing and debugging

• Parallelism implies a system can perform more than 
one task simultaneously

• Concurrency supports more than one task making 
progress
– Single processor / core, scheduler providing concurrency

February 20 Copyright 2018 Silberschatz, Gavin & Gagne 12



Concurrency vs. Parallelism

Concurrent execution on single-core system:

Parallelism on a multi-core system:

February 20 Copyright 2018 Silberschatz, Gavin & Gagne 13



Multicore Programming (Cont.)

• Types of parallelism 
– Data parallelism – distributes subsets of the 

same data across multiple cores, same 
operation on each

– Task parallelism – distributing threads across 
cores, each thread performing unique 
operation

• As # of threads grows, so does 
architectural support for threading
– CPUs have cores as well as hardware threads
– Consider Oracle SPARC T4 with 8 cores, and 8 

hardware threads per core

February 20 Copyright 2018 Silberschatz, Gavin & Gagne 14



Single and Multithreaded Processes

February 20 Copyright 2018 Silberschatz, Gavin & Gagne 15



Amdahl’s Law

• Identifies performance gains from adding additional cores to an 
application that has both serial and parallel components

• S is serial portion
• N processing cores

• That is, if application is 75% parallel / 25% serial, moving from 1 to 2 
cores results in speedup of 1.6 times

• As N approaches infinity, speedup approaches 1 / S

Serial portion of an application has disproportionate  effect on 
performance gained by adding additional cores

• But does the law take into account contemporary multicore systems?

February 20 Copyright 2018 Silberschatz, Gavin & Gagne 16



User Threads and Kernel Threads

• User threads - management done by user-level threads library
• Three primary thread libraries:

– POSIX Pthreads
– Windows threads
– Java threads

• Kernel threads - Supported by the Kernel
• Examples – virtually all general purpose operating systems, 

including:
– Windows 
– Solaris
– Linux
– Tru64 UNIX
– Mac OS X

February 20 Copyright 2018 Silberschatz, Gavin & Gagne 17



Multithreading Models

• Many-to-One

• One-to-One

• Many-to-Many

February 20 Copyright 2018 Silberschatz, Gavin & Gagne 18



Many-to-One

• Many user-level threads 
mapped to single kernel thread

• One thread blocking causes all 
to block

• Multiple threads may not run in 
parallel on muticore system 
because only one may be in 
kernel at a time

• Few systems currently use this 
model

• Examples:
– Solaris Green Threads
– GNU Portable Threads

February 20 Copyright 2018 Silberschatz, Gavin & Gagne 19



One-to-One
• Each user-level thread maps to kernel 

thread
• Creating a user-level thread creates a 

kernel thread
• More concurrency than many-to-one
• Number of threads per process 

sometimes restricted due to 
overhead

• Examples
– Windows
– Linux
– Solaris 9 and later

February 20 Copyright 2018 Silberschatz, Gavin & Gagne 20



Many-to-Many Model
• Allows many user level 

threads to be mapped to 
many kernel threads

• Allows the  operating 
system to create a 
sufficient number of 
kernel threads

• Solaris prior to version 9
• Windows  with the 
ThreadFiber package

February 20 Copyright 2018 Silberschatz, Gavin & Gagne 21



Two-level Model

• Similar to M:M, except that it 
allows a user thread to be bound to 
kernel thread

• Examples

– IRIX

– HP-UX

– Tru64 UNIX

– Solaris 8 and earlier

February 20 Copyright 2018 Silberschatz, Gavin & Gagne 22



Thread Libraries

• Thread library provides 
programmer with API for creating 
and managing threads

• Two primary ways of implementing

– Library entirely in user space

– Kernel-level library supported by the 
OS

February 20 Copyright 2018 Silberschatz, Gavin & Gagne 23



Pthreads

• May be provided either as user-level or 
kernel-level

• A POSIX standard (IEEE 1003.1c) API for 
thread creation and synchronization

• Specification, not implementation
• API specifies behavior of the thread 

library, implementation is up to 
development of the library

• Common in UNIX operating systems 
(Solaris, Linux, Mac OS X)

February 20 Copyright 2018 Silberschatz, Gavin & Gagne 24



Pthreads Example

February 20 Copyright 2018 Silberschatz, Gavin & Gagne 25



Pthreads Example (Cont.)

February 20 Copyright 2018 Silberschatz, Gavin & Gagne 26



Pthreads Code for Joining 10 Threads

February 20 Copyright 2018 Silberschatz, Gavin & Gagne 27



Windows  Multithreaded C Program

February 20 Copyright 2018 Silberschatz, Gavin & Gagne 28



Windows  Multithreaded C Program (Cont.)

February 20 Copyright 2018 Silberschatz, Gavin & Gagne 29



Java Threads

• Java threads are managed by the JVM
• Typically implemented using the threads model provided 

by underlying OS
• Java threads may be created by:

– Extending Thread class
– Implementing the Runnable interface

February 20 Copyright 2018 Silberschatz, Gavin & Gagne 30



Java Multithreaded Program

February 20 Copyright 2018 Silberschatz, Gavin & Gagne 31



Java Multithreaded Program (Cont.)

February 20 Copyright 2018 Silberschatz, Gavin & Gagne 32



Implicit Threading

• Growing in popularity as numbers of threads 
increase, program correctness more difficult with 
explicit threads

• Creation and management of threads done by 
compilers and run-time libraries rather than 
programmers

• Three methods explored
– Thread Pools
– OpenMP
– Grand Central Dispatch

• Other methods include Microsoft Threading 
Building Blocks (TBB),
java.util.concurrent package

February 20 Copyright 2018 Silberschatz, Gavin & Gagne 33



Thread Pools

• Create a number of threads in a pool where 
they await work

• Advantages:
– Usually slightly faster to service a request with 

an existing thread than create a new thread
– Allows the number of threads in the 

application(s) to be bound to the size of the 
pool

– Separating task to be performed from 
mechanics of creating task allows different 
strategies for running task
• i.e.Tasks could be scheduled to run periodically

• Windows API supports thread pools:

February 20 Copyright 2018 Silberschatz, Gavin & Gagne 34



OpenMP
• Set of compiler directives and an API 

for C, C++, FORTRAN 

• Provides support for parallel 
programming in shared-memory 
environments

• Identifies parallel regions – blocks of 
code that can run in parallel

#pragma omp parallel 

Create as many threads as there are 
cores

#pragma omp parallel for 

for(i=0;i<N;i++) { 

c[i] = a[i] + b[i]; 

} 

Run for loop in parallel

February 20 Copyright 2018 Silberschatz, Gavin & Gagne 35



Grand Central Dispatch

• Apple technology for Mac OS X and iOS 
operating systems

• Extensions to C, C++ languages, API, and run-
time library

• Allows identification of parallel sections
• Manages most of the details of threading
• Block is in “^{ }” - ˆ{ printf("I am a 
block"); } 

• Blocks placed in dispatch queue
– Assigned to available thread in thread pool when 

removed from queue

February 20 Copyright 2018 Silberschatz, Gavin & Gagne 36



Grand Central Dispatch

• Two types of dispatch queues:

– serial – blocks removed in FIFO order, 
queue is per process, called main queue

• Programmers can create additional serial 
queues within program

– concurrent – removed in FIFO order but 
several may be removed at a time

• Three system wide queues with priorities low, 
default, high

February 20 Copyright 2018 Silberschatz, Gavin & Gagne 37



Threading Issues

• Semantics of fork() and exec() system 
calls

• Signal handling

– Synchronous and asynchronous

• Thread cancellation of target thread

– Asynchronous or deferred

• Thread-local storage

• Scheduler Activations

February 20 Copyright 2018 Silberschatz, Gavin & Gagne 38



Semantics of fork() and exec()

• Does fork()duplicate only the 
calling thread or all threads?

– Some UNIXes have two versions of fork

• exec() usually works as normal –
replace the running process 
including all threads

February 20 Copyright 2018 Silberschatz, Gavin & Gagne 39



Signal Handling

• Signals are used in UNIX systems to notify a 
process that a particular event has occurred.

• A signal handler is used to process signals
– Signal is generated by particular event
– Signal is delivered to a process
– Signal is handled by one of two signal handlers:

• default
• user-defined

• Every signal has default handler that kernel 
runs when handling signal
– User-defined signal handler can override default
– For single-threaded, signal delivered to process

February 20 Copyright 2018 Silberschatz, Gavin & Gagne 40



Signal Handling (Cont.)

• Where should a signal be delivered 
for multi-threaded? 

– Deliver the signal to the thread to 
which the signal applies

– Deliver the signal to every thread in 
the process

– Deliver the signal to certain threads in 
the process

– Assign a specific thread to receive all 
signals for the process

February 20 Copyright 2018 Silberschatz, Gavin & Gagne 41



Thread Cancellation
• Terminating a thread before it has finished

• Thread to be canceled is target thread

• Two general approaches:

– Asynchronous cancellation terminates the 
target thread immediately

– Deferred cancellation allows the target thread 
to periodically check if it should be cancelled

• Pthread code to create and cancel a thread:

February 20 Copyright 2018 Silberschatz, Gavin & Gagne 42



Thread Cancellation (Cont.)

• Invoking thread cancellation requests cancellation, but 
actual cancellation depends on thread state

• If thread has cancellation disabled, cancellation remains 
pending until thread enables it

• Default type is deferred
– Cancellation only occurs when thread reaches cancellation 

point
• I.e. pthread_testcancel()
• Then cleanup handler is invoked

• On Linux systems, thread cancellation is handled through 
signals

February 20 Copyright 2018 Silberschatz, Gavin & Gagne 43



Thread-Local Storage

• Thread-local storage (TLS) allows each 
thread to have its own copy of data

• Useful when you do not have control 
over the thread creation process (i.e., 
when using a thread pool)

• Different from local variables
– Local variables visible only during single 

function invocation
– TLS visible across function invocations

• Similar to static data
– TLS is unique to each thread

February 20 Copyright 2018 Silberschatz, Gavin & Gagne 44



Scheduler Activations
• Both M:M and Two-level models require 

communication to maintain the appropriate 
number of kernel threads allocated to the 
application

• Typically use an intermediate data structure 
between user and kernel threads –
lightweight process (LWP)
– Appears to be a virtual processor on which 

process can schedule user thread to run
– Each LWP attached to kernel thread
– How many LWPs to create?

• Scheduler activations provide upcalls - a 
communication mechanism from the kernel to 
the upcall handler in the thread library

• This communication allows an application to 
maintain the correct number kernel threads

February 20 Copyright 2018 Silberschatz, Gavin & Gagne 45



Operating System Examples

• Windows Threads

• Linux Threads

February 20 Copyright 2018 Silberschatz, Gavin & Gagne 46



Windows Threads

• Windows implements the Windows API 
– primary API for Win 98, Win NT, Win 2000, Win 

XP, and Win 7

• Implements the one-to-one mapping, kernel-
level

• Each thread contains
– A thread id
– Register set representing state of processor
– Separate user and kernel stacks for when thread 

runs in user mode or kernel mode
– Private data storage area used by run-time 

libraries and dynamic link libraries (DLLs)

• The register set, stacks, and private storage 
area are known as the context of the thread

February 20 Copyright 2018 Silberschatz, Gavin & Gagne 47



Windows Threads (Cont.)

• The primary data structures of a thread 
include:

– ETHREAD (executive thread block) –
includes pointer to process to which thread 
belongs and to KTHREAD, in kernel space

– KTHREAD (kernel thread block) – scheduling 
and synchronization info, kernel-mode 
stack, pointer to TEB, in kernel space

– TEB (thread environment block) – thread id, 
user-mode stack, thread-local storage, in 
user space

February 20 Copyright 2018 Silberschatz, Gavin & Gagne 48



Windows Threads Data Structures

February 20 Copyright 2018 Silberschatz, Gavin & Gagne 49



Linux Threads

• Linux refers to them as tasks rather than threads
• Thread creation is done through clone() system call
• clone() allows a child task to share the address space 

of the parent task (process)
– Flags control behavior

• struct task_struct points to process data 
structures (shared or unique)

February 20 Copyright 2018 Silberschatz, Gavin & Gagne 50


