
CMSC 420:Fall 2020 Dave Mount

Final Exam

The exam is asynchronous and online. It is open-book, open-notes, open-Internet, but it must
be done on your own without the aid of other people or software. The total point value is 120
points. Good luck!

Problem 1. (35 points) Short answer questions. Except where noted, explanations are not re-
quired but may be given for partial credit.

(1.1) (4 pts) In 2-3 tree deletion, under what circumstances do you perform a merge as opposed
to adoption (key rotation)?

(1.2) (4 pts) Although AA trees are a variant of red-black trees, nodes are not colored. What
is the condition that determines whether a node in an AA tree is red or black?

(1.3) (4 pts) You access an element in a splay tree, and then a few operations later you access
the very same element. Which property of splay trees best explains why sequences of
operations like this are processed efficiently? (Choose from: static optimality, static
finger theorem, dynamic finger theorem, working set theorem, scanning theorem)

(1.4) (4 pts) What is the purpose of the next-leaf pointer in B+ trees?

(1.5) (4 pts) We claimed that scapegoat trees are efficient in the amortized sense, but find

operations in scapegoat trees are efficient even in the worst case. Why is this?

(1.6) (10 pts) You are using hashing with open addressing. Suppose that the table has just
one empty slot in it. In which of the following cases are you guaranteed to succeed in
finding the empty slot? (Select all that apply.)

(a) Linear probing (under any circumstances)

(b) Quadratic probing (under any circumstances)

(c) Quadratic probing, where the table size m is a prime number

(d) Double hashing (under any circumstances)

(e) Double hashing, where the table size m and hash function h(x) are relatively prime

(f) Double hashing, where the table size m and secondary hash function g(x) are rela-
tively prime

(1.7) (5 pts) In the unstructured memory management system described in Lecture 20, what
was the purpose of the size2 field at the end of each free block? (Why was it needed?)

Problem 2. (20 points) This problem involves the tree shown in Fig. 1.

(2.1) (4 points) List the nodes according to a preorder traversal

(2.2) (4 points) List the nodes according to an inorder traversal

(2.3) (4 points) List the nodes according to a postorder traversal

(2.4) (8 points) Show the final result of applying the operation splay(8) on this tree. (You
need only show the final result. Intermediate results can be shown to help with partial
credit.)

1



5

8

7

3

129

10

116

14

15

1

2

4

Figure 1: Tree traversal and splaying.

1
k

2
e

4
o

8
m

5
f

6
h

3
b

10
a

9
c

7
w

11
s

priority

key

class TreapNode {

Key key // key

int priority // priority

TreapNode left // left child

TreapNode right // right child

}

Figure 2: Treap node structure and an example.

Problem 3. (10 points) Suppose that you are given a treap data structure storing n keys. The
node structure is shown in Fig. 2. You may assume that all keys and all priorities are distinct.

(3.1) (7 points) Present pseudocode for the operation int minPriority(Key x0, Key x1),
which is given two keys x0 and x1 (which may or may not be in the treap), and returns
the lowest priority among all nodes whose keys x lie in the range x0 ≤ x ≤ x1. If the
treap has no keys in this range, the function returns Integer.MAX VALUE. Briefly explain
why your function is correct.

For example, in Fig. 2 the query minPriority("c", "g") would return 2 from node
"e", since it is the lowest priority among all keys x where "c" ≤ x ≤ "g".

(3.2) (3 points) Assuming that the treap stores n keys and has height O(log n), what is the
running time of your algorithm? (Briefly justify your answer.)

Problem 4. (15 points) In this problem we will build a suffix tree for S = aabbabaabbbaaba$.

(4.1) (4 points) List the 16 substring identifiers for the 16 suffixes of S. For the sake of
uniformity, list them in order (either back to front or front to back). For example, you
could start with “$” and end with the substring identifier for the entire string.

(4.2) (8 points) Draw a picture of the suffix tree. For the sake of uniformity, when drawing your
tree, use the convention of Fig. 7 in the Lecture 19 LaTeX lecture notes. In particular,
label edges of the final tree with substrings, index the suffixes from 0 to 15, and order
subtrees in ascending lexicographical order (a < b < $).

2



(4.3) (3 points) Draw the root and the first few levels of your suffix tree using the convention
of Fig. 5 in the Lecture 19 LaTeX lecture notes. In particular, label each node with the
index field and label each edge with a single character. (It is not necessary to show the
entire tree, but you may. It suffices to show the root, its children, and its grandchildren.)

Problem 5. (15 points) Throughout this problem we are given a set P = {p1, . . . , pn} of n points
in 2D space stored in a point kd-tree (see Fig. 3(a)).

(5.1) (10 points) In a segment sliding, you are given a vertical line segment, specified by its
lower endpoint q and its height h (see Fig. 3(b)). The query returns the first point pi ∈ P
that is first hit if we slide the segment to its right. If no point of P are hit, the query
returns null.

p8

p1
p2

p3

p4

p5

p6

p7

p9
q

h

x

y

p8

p1
p2

p3

p4

p5

p6

p7

p9

P

(a) (b)

p8

p1
p2

p3

p4

p5

p6

p7

p9

(c)

Q.low

B

Q.low

Figure 3: Segment-sliding and minimum box queries.

Give pseudo-code for an efficient algorithm, Point segSlideRight(Point q, float

h), which given the coordinates of the line segment, returns the answer to the segment-
sliding query.

You may assume the standard kd-tree structure given in class, where each node stores a
point p.point, a cutting dimension p.cutDim, and left and right child pointers p.left

and p.right, respectively. You may make use of any primitive operations on points and
rectangles. You may assume that there are no duplicate coordinate values among the
points of P or the query point.

(5.2) (5 points) In a minimum box query, you are given an axis-aligned rectangle Q as input
(given, say, by its corner points Q.low and Q.high), and the output is the smallest axis-
aligned rectangle B that contains all the points of P that lie within Q (see Fig. 3(c)).
If there are no points of P in Q, the query returns null. Present pseudo-code for an
efficient algorithm, Rectangle minBox(Rectangle Q), which given the query rectangle
Q, returns the answer to the minimum box query. (You may reuse or modify your
solution to (5.1).)

Problem 6. (25 points) In this problem, we will consider how to use/modify range trees to answer
related queries. Given a set P of n points in d-dimensional space, recall that a range tree
storing these points uses a total of O(n logd−1 n) storage. Given an axis-aligned rectangle R
in d-dimensional space, in O(logd n) time it is possible to identify a set of O(logd n) subtrees
in the range tree, such that the points lying within these subtrees form a partition of P ∩R.

3



In all cases, the input set P is a set of n points with positive coordinates. Note that the tree
that you construct might be for a different set of points, and it may even be in a different
dimension. In each case, describe the points that are stored in the range tree and how the
search process works. Justify your algorithm’s correctness and derive its running time.

(6.1) (10 points) In a skewed interval min query (SIM query), you are given two y-coordinates,
y0 and y1, where y0 < y1. Among all the points of P whose y-coordinate lies within
the interval [y0, y1], the answer is the point pi = (xi, yi) that minimizes xi + yi. More
visually, among all the points of P that lie within the horizontal strip y0 ≤ y ≤ y1, find
the point that is first hit by a line of slope −1 sweeping up from the origin. If there are
no points in the strip, the query returns the value null. If there are multiple points that
satisfy the x-conditions and have the same y-coordinates, any of them may be returned.
(In Fig. 4(a), the query returns point b.)

Your data structure should use O(n log n) storage and answer queries in O(log2 n) time.

a

b

d

e

g

i
h

j

k

l

m

f

u

n

y0

x

y

(a) (b) (c)

y1

a

b

d

e

g

i
h

j

k

`

f

u

n

x

y

q

`

w

w

a

b

d

e

g

i
h

k

f

u

n

x

y

q

s

Figure 4: Using range trees to answer various queries.

(6.2) (5 points) An L-shaped counting query involves counting all the points lying within an
L-shaped region. The query is described by three parameters, the lower-left corner q
of the L-shape, the length ` which is the total height and width of the shape, and the
width w of the segments of the L-shape (see Fig. 4(b)). The query returns a count of all
the points that lie within this region.

Your data structure should use O(n log n) storage and answer queries in O(log2 n) time.

(6.3) (10 points) A maximum empty square query is given a query point q, and it returns half
the side length of the largest box centered at q that contains no point P in its interior.
If q coincides with a point of P , the query returns 0. (In Fig. 4(c), the query returns the
value s.)

Your data structure should use O(n log2 n) storage and answer queries in O(log3 n) time.

4


