
CMSC 420:Fall 2020 Dave Mount

Practice Problems for the Final Exam

Like the Midterm Exam, the Final Exam will be asynchronous and online. The exam will be made
available through Gradescope for a 48-hour period starting at 12:00am the morning of Wed,
Dec 16 and running through 11:59pm the evening of Thu, Dec 17 (Eastern Time). The exam
is designed to be taken over a 2-hour time period, but to allow time for scanning and uploading,
you will have 2.5 hours to submit the exam through Gradescope once you start it. The exam will
be open-book, open-notes, open-Internet, but it must be done on your own without the aid of other
people or software. (You may use a simple arithmetic calculator, but I don’t expect that you will
need one.)

Disclaimer: This just reflects the material since the second midterm. These practice problems
have been extracted from old homework assignments and exams. Material changes from semester to
semester. These do not necessarily reflect the actual coverage, difficulty, or length of the midterm
exam.

Problem 0. Since the exam is comprehensive, please look back over the previous homework as-
signments, the midterm exam, and the midterm practice problems. You should expect at
least one problem that involves tracing through an algorithm or construction given in class.

Problem 1. Short answer questions. Except where noted, explanations are not required but may
be given for partial credit.

(a) Let T be extended binary search tree (that is, one having internal and external nodes).
You visit the nodes of T according to one of the standard traversals (preorder, postorder,
or inorder). Which of the following statements is necessarily true? (Select all that apply.)

(i) In a postorder traversal, all the external nodes appear in the order before any of the
internal nodes

(ii) In a preorder traversal, all the internal nodes appear in the order after any of the
external nodes

(iii) In an inorder traversal, internal and external node alternate with each other

(iv) None of the above is true

(b) You have an AVL tree containing n keys, and you insert a new key. As a function
of n, what is the maximum number of rotations that might be needed as part of this
operation? (A double rotation is counted as two rotations.) Explain briefly.

(c) Repeat (b) in the case of deletion. (Give your answer as an asymptotic function of n.)

(d) Suppose you know that a very small fraction of the keys in a data structure are to be
accessed most of the time, but you do not know which these keys are. Among the data
structures we have seen this semester, which would be best for this situation? Explain
briefly.

(e) In class, we mentioned that when using double hashing, it is important that the second
hash function g(x) should not share any common divisors with the table size m. What
might go wrong if this were not the case?

1



(f) What is the maximum number of points that can be stored in a 3-dimensional point
quadtree of height h? Express your answer as an exact (not asymptotic) function of h.
(Hint: It may be useful to recall the formula for any c > 1,

∑m
i=0 c

i = (cm+1)−1)/(c−1).)

(g) We have n uniformly distributed points in the unit square, with no duplicate x- or y-
coordinates. Suppose we insert these points into a kd-tree in random order (see the left
side of Fig. 1). As in class, we assume that the cutting dimension alternates between
x and y. As a function of n what is the expected height of the tree? (No explanation
needed.)

x

y

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

x

y

1
2

3

4

5

6

7

8

9

10

11
15

13

14
12

Figure 1: Height of kd-tree.

(h) Same as the previous problem, but suppose that we insert points in ascending order of
x-coordinates, but the y-coordinates are random (see the right side of Fig. 1). What is
the expected height of the tree? (No explanation needed.)

(i) Between the classical dynamic storage allocation algorithm (with arbitrary-sized blocks)
or the buddy system (with blocks of size power of 2) which is more susceptible to internal
fragmentation? Explain briefly.

Problem 2. In our simple binary-search tree implementations, we assumed that each node stores
just a key-value pair (p.key and p.value) and pointers to the node’s left and right children
(p.left and p.right). In practice, it is often useful to store additional information including
the following:

� p.parent: p’s parent, or null if p is the root

� p.min: The smallest key in the subtree rooted at p

� p.max: The largest key in the subtree rooted at p

� p.size: The total number of nodes (including p) in p’s subtree

Modify the right rotation pseudo-code so that (in addition to the rotation) all of the above
associated values are updated. (Note: Remember that the return value is significant and
should remain q.)

Problem 3. Define a new treap operation, expose(Key x). It finds the key x in the tree (throwing
an exception if not found), sets its priority to −∞ (or more practically Integer.MIN VALUE),

2



and then restores the treap’s priority order through rotations. (Observe that the node con-
taining x will be rotated to the root of the tree.) Present pseudo-code for this operation.

Problem 4. In scapegoat trees, we showed that if size(u.child)/size(u) ≤ 2
3 for every node

of a tree, then the tree’s height is at most log3/2 n. In this problem, we will generalize this
condition to:

size(u.child)

size(u)
≤ α, (∗)

for some constant α.

(a) Why does it not make sense to set α larger than 1 or smaller than 1
2?

(b) If every node of an n-node tree satisfies condition (∗) above, what can be said about the
height of the tree as a function of n and α? Briefly justify your answer.

Problem 5. We say that an extended binary search tree is geometrically-balanced if the splitter
value stored in each internal node p is midway between the smallest and largest keys of its
external nodes. More formally, if the smallest external node in the subtree rooted at p has the
value xmin and the largest external node has the value xmax, then p’s splitter is (xmin+xmax)/2
(see Fig. 2).

4

8 25

16

20

1

6 7

15

19 21

31

A = {1, 6, 7, 15, 19, 21, 31}

6.5
xmin xmax

s s =
xmin + xmax

2

p
buildTree(A), where

Figure 2: Geometrically balanced tree.

Given a sorted array A[0 . . . n − 1] containing n ≥ 1 numeric keys, present pseudo-code for
a function that builds a geometrically-balanced extended binary search tree, whose external
nodes are the elements of A. Convention: If a key is equal to an internal node’s splitter
value, then the key is stored in the left subtree.

Briefly explain any assumptions you make about underlying primitive operations (e.g., con-
structors for your internals and external nodes). Any running time is okay.

Problem 6. Given a set P of n points in the real plane, a partial-range max query is given two
x-coordinates x1 and x2, and the problem is to find the point p ∈ P that lies in the vertical
strip bounded by x1 and x2 (that is, x1 ≤ p.x ≤ x2) and has the maximum y-coordinate (see
Fig. 3).

Present pseudo-code for an efficient algorithm to solve partial-range max queries, assuming
that the points are stored in a kd-tree. You may make use of any primitive operations on
points and rectangles (but please explain them). You may assume that there are no duplicate
coordinate values, and no coordinates are equal to x1 and x2. If you solve the problem
recursively, indicate what the initial call is from the root level. If the tree is balanced, your
algorithm should run in time O(

√
n).

3



x1 x2

Answer

x

y

Figure 3: Partial-range max query.

Problem 7. In class we demonstrated a simple idea for deleting keys from a hash table with open
addressing. Namely, whenever a key is deleted, we stored a special value “deleted” in this
cell of the table. It indicates that this cell contained a deleted key. The cell may be used
for future insertions, but unlike “empty” cells, when the probe sequence searching for a key
encounters such a location, it should continue the search.

Suppose that we are using linear probing in our hashing system. Describe an alternative
approach, which does not use the “deleted” value. Instead it moves the table entries around
to fill any holes caused by a deleted items.

In addition to explaining your new method, justify that dictionary operations are still per-
formed correctly. (For example, you have not accidentally moved any key to a cell where it
cannot be found!)

Problem 8. In class we showed that for a balanced kd-tree with n points in the real plane (that
is, in 2-dimensional space), any axis-parallel line intersects at most O(

√
n) cells of the tree.

The purpose of this problem is to show that does not apply to lines that are not axis-parallel.
Show that for every n, there exists a set of points P in the real plane, a kd-tree of height
O(log n) storing the points of P , and a line `, such that every cell of the kd-tree intersects
this line.

Problem 9. In applications where there is a trade-off to be faced, a common query involves a
set called the Pareto maxima.1 Given a set of 2-dimensional data, we say that a point q
dominates another point q′ if qx > q′x and qy > q′y. The set of points of P that are not
dominated by any other point of P are called the Pareto maxima (the highlighted points of
Fig. 4(a)). As seen in the figure, these points naturally define a “staircase” shape.

Given a 2-dimensional point set P and a query point q = (qx, qy) define q’s Pareto predecessor
to the point (x, y) ∈ P such that x ≤ qx, y ≥ qy, and among all such points, x is maximum.
An more visual way of think about the Pareto predecessor is as the rightmost point in the
subset of P lying in q’s northwest quadrant (see Fig. 4(b)).

1To motivate this, suppose that you are a policy maker and you have set of energy technologies to chose from
a (coal, nuclear, wind, solar) where each has an associated cost of deployment and environmental impact. Some
alternatives are inexpensive to deploy but have a high negative impact on the environment, and others are more
expensive to deploy but have a lower impact on the environment. Clearly, we are not interested in any technology
that is “dominated” by another technology that is both less expensive and has a lower environmental impact.

4



q

paretoPred(q)

(a) (b)

Figure 4: (a) the Pareto maxima and (b) the Pareto predecessor.

Assuming that the points of P are stored in a kd-tree T , present pseudo-code for a function
T.paretoPred(Point q), which returns the Pareto predecessor of a query point q.

Hint: The recursive function to compute the predecessor has the following structure:

Point paretoPred(Point q, KDNode p, Rectangle cell, Point best),

where q is the query point, p is the current node of the kd-tree being visited, cell is the
rectangular cell associated with the current node, and best is the rightmost point encountered
so far in the search that satisfies the Pareto criteria.

Problem 10. In this problem we will see how to use kd-trees to answer a common geometric
query, called ray shooting. You are given a collection of vertical line segments in 2D space,
each starts at the x-axis and goes up to a point in the positive quadrant. Let P = {p1, . . . , pn}
denote the upper endpoints of these segments (see Fig. 5). You may assume that both the x-
and y-coordinates of all the points of P are strictly positive real numbers.

x

y

p8

p1

p2

p3
p4

p5

p6

p7

p9

p10

rayShoot(q) = p8

x

y

q

p8

q′ rayShoot(q′) = null

p1

p2

p3
p4

p5

p6

p7

p9

p10

Figure 5: Ray shooting in a kd-tree.

Given a point q, we shoot a horizontal ray emanating from q to the right. This ray travels
until it hits one of these segments (or perhaps misses them all). For example, in the figure

5



above, the ray shot from q hits the segment with upper endpoint p8. The ray shot from q′

hits nothing.

In this problem we will show how to answer such queries using a standard point kd-tree for
the point set P . A query is given the point q = (qx, qy), and it returns the upper endpoint
pi ∈ P of the segment the ray first hits, or null if the ray misses all the segments.

Suppose you are given a kd-tree of height O(log n) storing the points of P . (It does not store
the segments, just the points.) Present pseudo-code for an efficient algorithm, rayShoot(q),
which returns an answer to the horizontal ray-shooting query (see the figure above, right).

You may assume the kd-tree structure given in class, where each node stores a point p.point,
a cutting dimension p.cutDim, and left and right child pointers p.left and p.right, respec-
tively. You may make use of any primitive operations on points and rectangles (but please
explain them). You may assume that there are no duplicate coordinate values among the
points of P or the query point.

Hint: rayShoot(q) will invoke a recursive helper function. Here is a suggested form, which
you are not required to use:

Point rayShoot(Point2D q, KDNode p, Rectangle cell, Point best),

Be sure to indicate how rayShoot(q) makes its initial call to the helper function.

Problem 11. Recall the buddy system of allocating blocks of memory (see Fig. 6). Throughout
this problem you may use the following standard bit-wise operators:

& bit-wise “and” | bit-wise “or”
^ bit-wise “exclusive-or” ~ bit-wise “complement”
<< left shift (filling with zeros) >> right shift (filling with zeros)

You may also assume that you have access to a function bitMask(k), which returns a binary
number whose k lowest-order bits are all 1’s. For example bitMask(3) = 1112 = 7.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 150

1

2

3

4

Level

0 2 4 6 8 10 12 14

0 4 8 12

0 8

0

Figure 6: Buddy relatives.

Present a short (one-line) expression for each of the following functions in terms of the above
bit-wise functions:

6



(a) boolean isValid(int k, int x): True if and only if x ≥ 0 a valid starting address
for a buddy block at level k ≥ 0.

(b) int sibling(int k, int x): Given a valid buddy block of level k ≥ 0 starting at
address x, returns the starting address of its sibling.

(c) int parent(int k, int x): Given a valid buddy block of level k ≥ 0 starting at
address x, returns the starting address of its parent at level k + 1.

(d) int left(int k, int x): Given a valid buddy block of level k ≥ 1 starting at address
x, returns the starting address of its left child at level k − 1.

(e) int right(int k, int x): Given a valid buddy block of level k ≥ 1 starting at address
x, returns the starting address of its right child at level k − 1.

Problem 12. Suppose you have a large span of memory, which starts at some address start and
ends at address end-1 (see Fig. 7). (The variables start and end are generic pointers of type
void*.) As the dynamic memory allocation method of Lecture 15, this span is subdivided
into blocks. The block starting at address p is associated with the following information:

� p.inUse is 1 if this block is in-use (allocated) and 0 otherwise (available)

� p.prevInUse is 1 if the block immediately preceeding this block in memory is in-use.
(It should be 1 for the first block.)

� p.size is the number of words in this block (including all header fields)

� p.size2 each available block has a copy of the size stored in its last word, which is
located at address p + p.size - 1.

(For this problem, we will ignore the available-list pointers p.prev and p.next.)

In class, we said that in real memory-allocation systems, blocks cannot be moved, because they
may contain pointers. Suppose, however, that the blocks are movable. Present pseudo-code
for a function that compacts memory by copying all the allocated blocks to a single contiguous
span of blocks at the start of the memory span (see Fig. 7). Your function compress(void*

start, void* end) should return a pointer to the head of the available block at the end.
Following these blocks is a single available block that covers the rest of the memory’s span.

0
1

5
0

5
0

0
1

2
0

0
1

8
0

8
0

1
3
0

0
1

5
0

5
0

0
1

1
8
0

1
8
0

Initial:

50 20 80 5030

180

start end

0
1

2
0

1

20

1
1

2
0

20

1
1

2
0

20

1
3
0

30

1

return

compact(start, end)

Figure 7: Memory compactor.

7



To help copy blocks of memory around, you may assume that you have access to a function
void* memcpy(void* dest, void* source, int num), which copies num words of memory
from the address source to the address dest.

8


