
CMSC 420:Fall 2020 Dave Mount

Programming Assignment 2: Weight-Balanced Jackhammer Tree

Handed out: Tue, Nov 3. Due: Mon, Nov 16, 11pm.

Overview: In this assignment you will implement a weight-balanced variant of an extended binary
search tree. As in standard ordered dictionaries, the entries stored in your data structure will
consist of key-value pairs. Following the same structure of the first programming assignment,
all the key-value pairs are stored in the external nodes (leaves) of the tree, and the internal
nodes just contain keys as splitters. Given an internal node with key value x, the left subtree
contains key-value pairs whose keys are strictly smaller than x and the right subtree contains
key-value pairs whose keys are greater than or equal to x.

The new twist here is that each key-value entry will have an associated positive numeric
weight, which for us will be represented by a Java float. So, we can think of each entry in
the tree as consisting of three things (x, v, w), where x is its key, v is its associated value, and
w > 0 is its associated weight. We think of the weight as an indication of the importance of
a node, and entries of higher weight (relative to the total weight) should reside closer to the
root.

Weight-Balanced Trees: One way to implement this is through the use of weight-balanced trees.
This generalizes the notion of height balance with standard binary search trees. We assume
that we are given a real parameter α, where 1/2 < α < 1. Given an extended binary search
tree T and any internal node p of T , we define p’s weight, denoted weight(p) to be the sum
of the weights of the external nodes in the subtree rooted at p. (Note that the internal nodes
do not contribute to the weight. They are just there to help us find external nodes.) Define
p’s balance ratio, denoted balance(p) to be

balance(p) =
max(weight(p.left),weight(p.right))

weight(p)
.

We say that an extended binary search tree T is α-balanced if for all internal nodes p in
T , balance(p) ≤ α. Note that as α gets closer to 1/2, such a tree must be nearly perfectly
balanced in the sense that its two subtrees have nearly half of the total weight, and as α
approaches 1, the tree can be completely arbitrary, since either subtree can have an arbitrarily
large fraction of the total weight.

Unfortunately, when nodes are associated with arbitrary weights, an α-balanced tree may not
even exist. For example, if we have just two keys, with weights w1 = 0.1 and w2 = 0.9, the
only possible tree will have a balance ratio of 0.9. For this reason, we introduce an additional
rule. Given any node, define its maximum weight, denoted maxWt(p) to be the largest weight
of any single entry in p’s subtree. (If the node is an external node, this is just the weight of
the associated entry.) Define the max ratio of an internal node p, denoted max(p) to be

max(p) =
maxWt(p))

weight(p)
.
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Given a numeric parameter 0 ≤ β ≤ 1, we say that a node p is β-exempt if max(p) > β. We
say that a tree is (α, β)-balanced if every internal node p is either β-exempt or is α-balanced.
If we chose α and β properly, it can be shown that, for any collection of weighted dictionary
entries, there exists an (α, β)-balanced extended binary search containing these keys. In
particular, it suffices to choose α and β such that 1/2 < α < 1 and β < 2α − 1.1 In our
implementation, we will use the values α = 0.66667 ≈ 2/3 and β = 1/4 = 0.25. An example
of such a tree is shown in Fig. 1. The tree is valid because all nodes that are not α-balanced
are β-exempt.
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Figure 1: An (α, β)-balanced (extended) search tree, for α = 2/3 and β = 1/4. We have omitted the
values, showing just the keys. Each internal node p is labeled with weight(p) : max(p) : balance(p).
Nodes have balance ratios larger than α are flagged with “!!” and β-exempt nodes are shaded in
blue.

Operations: Below we outline the specifications of our weight-balanced trees, which we call bal-
anced jackhammer trees or BJ trees, for short. The operations for extended binary search
trees are very similar to the standard trees we have seen. Here is a formal definition of how
the operations work.

Initialization: The initial tree consists of a root pointer whose value is null. If the tree
consists of a single key-value pair, the root points directly to an external node containing
this pair. Once the tree has two or more entries, the root will point to an internal node.

Value find(Key x): (Same as in Programming Assignment 1)

void insert(Key x, Value v, float w): Inserts the pair (x, v) of weight w. The inser-
tion process starts out exactly as in Programming Assignment 1, but as we are returning
from the recursive calls, we update the weights and max-weights associated with each
node along the search path. Next, starting at the root, we retrace the search path,

1Why is this? Suppose that a node p is not α-balanced. Let us normalize the weights of p’s subtree so they sum to
1. (Otherwise, just divide all the following computations through by p’s total weight.) In order to be able to create
a subtree whose root node is α-balanced, it must be possible to find a splitter that partitions p’s weight somewhere
within the interval (1−α, α). If this were not possible, there must be an entry that spans this entire interval, meaning
that its weight must be at least α− (1 − α) = 2α− 1. If there were such an entry, however, its max ratio would be
2α− 1 > β, and so this node would be exempt from the weight-balance condition.
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walking down from the root. At the first instance (if any) that we encounter a node p
that violates the (α, β)-balance condition (that is, balance(p) > α and max(p) ≤ β), we
apply a procedure (described in the function buildTree of Lecture 13) that rebuilds the
tree in the most balanced manner possible, and replaces the subtree at p with this new
tree.

For the sake of consistency, you should observe the following conventions:

� Use the float value α = 0.66667f (rather than exactly 2/3) when checking the
balance condition.

� Since there may be multiple nodes on the search path that violate the (α, β)-balance
conditions, choose the one that is closest to the root. (Note that this is the opposite
of what Scapegoat trees do.)

� As is done in buildTree given in Lecture 13, if there are two splitting indices i that
achieve identical weight differences, favor the one that places more weight in the
right subtree.

void delete(Key x): Again, the process starts the same as in Programming Assignment 1,
and as we are returning from the recursive calls, we update the weights and max-weights
associated with each node along the search path. When we return to the root, we apply
the same rebalancing process as for insertion, by walking down the search path until
first finding an instance (if any) of a node p that violates the (α, β)-balance condition.
We apply the same rebuilding process to this node as in insertion.

For example, in Fig. 2, we consider the deletion of key “m” from the tree in Fig. 1. On
left, we show result of the standard deletion algorithm (from Programming Assignment
1), and we update the node weights as we return up the search path. As we descend the
search path, we find that node “k” is not α-balanced (its balance ratio is 7/8 > 2/3),
and it is not β-exempt (its max ratio is 2/8 ≤ 1/4), so we rebuild this subtree. The
result is shown on the right side.
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Figure 2: Deletion from a BJ tree.

ArrayList<String> getPreorderList(): This is the same as in Programming Assignment
1, but we include the weight associated with each node.

� Internal node p storing a key x and having total weight p.weight:

"(" + x.toString() + ") wt: " + p.weight
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� External node p storing the pair (x, v) with weight p.weight:

"[" + x.toString() + " " + v.toString + "] wt: " + p.weight

Our testing programs are based on Java String equality. Note the use of parentheses
for internal nodes and square brackets for external nodes. Also, note the single space
between the key and value.

For example, given the tree of Fig. 1, the elements of the ArrayList would consist of
the following strings:

(...Finish this...)

Other operations: The remaining operations getMin(), getMax(), findDown(x), findUp(x),
and clear() are the same as in Programming Assignment 1.

Running-time Requirements: If no rebuilding takes place, all the dictionary operations (insert,
delete, find, getMin, getMax, findUp, and findDown) should run in time proportional to
the height of the tree. (The find operation should run in time proportional to the length of
the search path to the key being sought.) If rebuilding is necessary, the rebuilding time should
be O(k log k) for a subtree with k external nodes and weights are uniform. (The algorithm
presented in class achieves the bound.) The operation getPreorderList should run in time
proportional to the number of nodes in the tree. We will determine this by inspection of your
submitted code.

Program structure: We will provide a driver program that will input a set of commands. You
need only implement the data structure and the functions listed above. In particular, you will
implement a class called BJTree, which has the following public interface. (We have included
the values of α and β as constants.)

package cmsc420_f20;

public class BJTree<Key extends Comparable<Key>, Value> {

private final float ALPHA = 0.66667f; // maximum allowed balance ratio

private final float BETA = 0.25f; // maximum weight exemption

public BJSTree() { ... } // constructs an empty tree

public Value find(Key x) { ... }

public void insert(Key x, Value v, float w) throws Exception { ... }

public void delete(Key x) throws Exception { ... }

public ArrayList<String> getPreorderList() { ... }

public Value getMin() { ... }

public Value getMax() { ... }

public Value findDown(Key x) { ... }

public Value findUp(Key x) { ... }

public void clear() { ... }

}

As in Programming Assignment 1, we assume that Key and Value support the toString()

method, and the type Key implements Comparable<Key>.
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Node structure: As in Programming Assignment 1, you should use inheritance in your node
structure. The notable difference is that, since all nodes will store a weight value, this can
be added to the parent class. For external nodes, this is the weight of the entry. For internal
nodes, this is the total weight of the entire subtree rooted at this node (that is, p.weight
= p.left.weight + p.right.weight). Also, for each internal node, the max-weight entry
should be cached at this node, since computing it each time we visit the node would take
too much time. So, we add an entry float maxWeight to each internal node. (If you prefer,
you could place it instead in the parent class Node. While this is not ideal, it will make your
coding simpler to assume that all keys have this field.)

public class BJTree<Key extends Comparable<Key>, Value> {

private abstract class Node { // generic node (purely abstract)

Key key;

float weight; // total weight of all entries in this subtree

abstract Value find(Key x); // no function body for these!

abstract Node insert(Key x, Value v, float w) throws Exception;

abstract Node delete(Key x) throws Exception;

// ... other functions omitted

}

private class InternalNode extends Node { // internal node

Node left;

Node right;

float maxWeight; // maximum weight of any single entry

Value find(Key x) { ... }

Node insert(Key x, Value v) throws Exception { ... }

Node delete(Key x) throws Exception { ... }

// ... other functions omitted

}

private class ExternalNode extends Node { // external node

Value value;

Value find(Key x) { ... }

Node insert(Key x, Value v) throws Exception { ... }

Node delete(Key x) throws Exception { ... }

// ... other functions omitted

}

// ... public functions (see above)

}

Actual Test Data? We will use the same test data as before. The input format will change, but
we will provide you with an updated version of the CommandHandler function, so you should
not need to worry about this.

Skeleton Code: We will provide you with some skeleton code to start with. This consists of the
following:

5



BJTree.java: A skeletal version of the main class for the extended binary search tree. This
is the only file you need modify.

Airport.java: A class that stores information about airports

Point2D.java: A small utility class for storing (x, y) coordinates. Used for each airport’s
latitude and longitude.

BJTreeTester.java: Main program for testing your implementation. It inputs commands
either from a file or standard input and sends output to another file or standard output.

CommandHandler.java: A class that processes commands that are read from the input file
and produces the appropriate function calls to the member functions of your BJTree

class. This also contains a function that converts the output of the getPreorderList

operation into an indented inorder traversal of the tree, which is a bit easier to read.

You may create additional files as well. Other than BJTree.java avoid modifying or reusing
any of the above files, since we overwrite them with our own when testing your program. Use
the package “cmsc420 f20” for all your source files.

Testing/Grading: We will be using Gradescope’s autograder and JUnit for testing and grading
your submissions. All the tests and the expected results are visible. We will provide a link to
the final test data on the class Projects page. Some grading will be done manually, and this
will constitute 10% of the final score. We will be checking the following items:

� You should use Java’s class inheritance to implement your internal and external nodes.

� All dictionary operations (including findUp, findDown, getMin, and getMax) should
be implemented so they run in time proportional to the height of the tree (and not
proportional to the number of nodes in the tree).

� We will not check in detail for adherence to coding standards, but we may deduct points
if your code is unusually complex of messy.

Submission Instructions and Late Policy:

As with Programming Assignment 1, submissions will be made through Gradescope. I dis-
covered there is one simplification you can make. Upload your modified BJTree.java file,
and any other files (if any) that you created. You do NOT need to upload the files that we
provided in the skeleton code.

Late Policy: The late policy is the same as that listed in the course syllabus:

Up to 6 hours late: 5% of total
Up to 24 hours late: 10% of the total
For each additional 24 hours late: 20% of the total
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