
CMSC 420 Dave Mount

CMSC 420: Lecture 7
Red-black and AA trees

“A rose by any other name . . . ”: In the previous lecture, we presented the 2-3 tree, which
allows nodes of variable widths. In this lecture, we will explore a closely related binary-tree
data structure, called a red-black tree, and we will discuss a particular implementaiton, which
is called an AA trees. (Before reading this lecture, please review the material on 2-3 trees.)

Red-Black Trees: While a 2-3 tree provides an interesting alternative to AVL trees, the fact that
it is not a binary tree is a bit annoying. As we saw earlier in the semester, there are ways
of representing arbitrary trees as binary trees. This inspires the question, “Can we encode a
2-3 tree as an equivalent binary tree?” Unfortunately, the first-child, next-sibling approach
presented earlier in the semester will not work. (Can you see why not? At issue is whether
the inorder properties of the tree hold under this representation.)

Here is a simple approach that works, however. First, there is no need to modify 2-nodes,
since they are already binary-tree nodes. To represent a 3-node as a binary-tree node, we
create a two-node combination, as shown in Fig. 1(a) below. The 2-3 tree shown in the inset
would be encoded in the manner shown in Fig. 1(b).

(b)(a)

A C E

b : d

A C E

d

b

2

1 3

8

9 14 18 23

Red-black tree

11

4

20
15

7
5

2

1 3

15 : 208

9 14 18 23

2-3 tree

4 : 11

5 : 7

Fig. 1: Encoding a 2-3 tree as an equivalent binary tree.

If we label each of “second nodes” of the 3-nodes as red and label all the other nodes as black,
we obtain a binary tree with both red and black nodes. It is easy to see that the resulting
binary tree satisfies the following properties:

(1) Each node is either red or black.

(2) The root is black.

(3) All null pointers are treated as if they point to black nodes (a conceptual convenience).

(4) If a node is red, then both its children are black.

(5) Every path from a given node to any of its null descendants contains the same number
of black nodes.

A binary search tree that satisfies these conditions is called a red-black tree. It is easy to see
that the above encoding of any 2-3 tree to this binary form satisfies all of these properties.
(On the other hand, if you just saw this list of properties without having seen the 2-3 tree,
it would seem to be very arcane!) Because 2-3 trees have O(log n) height, the following is an
immediate consequence:

Lecture 7 1 Fall 2020



CMSC 420 Dave Mount

Lemma: A red-black tree with n nodes has height O(log n).

Note that not every red-black tree is the binary encoding of a 2-3 tree. There are two issues.
First, the red-black conditions do not distinguish between left and right children, so a 3-node
could be encoded in two different ways in a red-black tree (see Fig. 2(a)). More seriously,
the red-black condition allows for the sort of structure in Fig. 2(b), which clearly does not
correspond to a node of a 2-3 tree.

(a)

b : d

d

b

b

d
f

d

b

b : d : f

(b)

or

Fig. 2: Color combinations allowed by the red-black tree rules.

It is interesting to observe that this three-node combination can be seen as a way of modeling
a node with four children. Indeed, there is a generalization of the 2-3 tree, called a 2-3-4
tree, which allows 2-, 3-, and 4-nodes. Red-black trees as defined above correspond 1–1 with
2-3-4 trees. Red-black trees are the basis of TreeMap class in the java.util package. The
principle drawback of red-black trees is that they are rather complicated to implement. For
this reason, we will introduce a variant of the red-black tree below, called an AA tree, which
is easier to code.

AA trees (Red-Black trees simplified): In an effort to simplify the complicated cases that
arise with the red-black tree, in 1993 Arne Anderson developed a restriction of the red-black
tree. He called his data structure a BB tree (for “Binary B-tree”), but over time the name has
evolved into AA trees, named for the inventor (and to avoid confusion with another popular
but unrelated data structure called a BB[α] tree).

Anderson’s idea was to allow the conversion described above between 2-3 trees and red-black
trees but add a rule that forbids the alternate configurations shown in Fig. 2. The additional
rule is:

(6) Each red node can arise only as the right child of a black node.

The edge between a red node and its black parent is called a red edge, and is shown as a
dashed red edge in our figures. Note that, while AA-trees are simpler to code, experiments
show that are a bit slower than red-black trees in practice.

The implementation of the AA tree has the following two noteworthy features, which further
simplify the coding:

We do not use null pointers: Instead, we create a special sentinel node, called nil (see
Fig. 3(a)), and every null pointer is replaced with a pointer to nil. (Although the tree
may have many null pointers, there is only one nil node allocated, with potentially
many incoming pointers.) This node is considered to be black.

Why do this? Observe that nil.left == nil and nil.right == nil. This simplifies
the code because we can always de-reference a pointer, without having to check first
whether it is null.

Lecture 7 2 Fall 2020



CMSC 420 Dave Mount

(b)(a)

nil
2

1 3

8

9 14 18 23

AA tree

11
4

20
15

7
5

2

1 3

15 : 208

9 14 18 23

2-3 tree

4 : 11

5 : 7

all point to nil
level = 0

Level:

3

2

1

Fig. 3: AA trees: (a) the nil sentinel node, (b) the AA tree for a 2-3 tree.

We do not store node colors: Instead, each node p stores a level number, denoted p.level

(see Fig. 3(b)). Intuitively, the level number encodes the level of the associated node in
the 2-3 tree. Formally, nil node is at level 0, and if q is a black child of some node p,
then p.level = q.level+ 1, and if q is a red child of p, then they have the same level
numbers.

We do not need to store node colors. For example, we can determine whether a black
node p’s right child is red, it suffices to test p.right.level == p.level.

AA tree operations: Since an AA tree is essentially a binary search tree, the find operation
is exactly the same as for any binary search tree. Insertions and deletions are performed in
essentially the same way as for AVL trees: first the key is inserted or deleted at the leaf level,
and then we retrace the search path back to the root and restructure the tree as we go. As
with AVL trees, restructuring essentially involves rotations. For AA trees the two rotation
operations go under the special names skew and split. They are defined as follows:

A C E

d

b

b

d

A C E

skew(p)

p

(a)

A C E

d
b

split(p)

p

(b)

d

A C E G

b ff

G

returned

q p

q q

p

q

returned

Fig. 4: AA restructuring opertions (a) skew and (b) split. (Afterwards q may be red or black.)

skew(p): If p is black and has a red left child, rotate so that the red child is now on the
right (see Fig. 4(a)). The level of these two nodes are unchanged. Return a pointer to
upper node of the resulting subtree.

split(p): If p is black and has a chain of two consecutive red nodes to its right (that is,
p.level == p.right.level == p.right.right.level), split this triple by performing
a left rotation at p and promoting p’s right child, call it q, to the next higher level (see
Fig. 4(b)).

Lecture 7 3 Fall 2020



CMSC 420 Dave Mount

In the figure, we have shown p as a black node, but in the context of restructuring p may be
either red or black. As a result, the node q that is returned from the operations may either be
red or black. The implementation of these two operations is shown in the code block below.

AA tree skew and split utilities
AANode skew(AANode p) {

if (p == nil) return p;

if (p.left.level == p.level) { // red node to our left?

AANode q = p.left; // do a right rotation at p

p.left = q.right;

q.right = p;

return q; // return pointer to new upper node

}

else return p; // else, no change needed

}

AANode split(AANode p) {

if (p == nil) return p;

if (p.right.right.level == p.level) { // right-right red chain?

AANode q = p.right; // do a left rotation at p

p.right = q.left;

q.left = p;

q.level += 1; // promote q to next higher level

return q; // return pointer to new upper node

}

else return p; // else, no change needed

}

AA-tree insertion: As mentioned above, we insert a node just as for a standard binary-search
tree and then work back up the tree restructuring as we go. What sort of restructuring is
needed? Recall first that (following the policies of 2-3 trees) all leaves should be at the same
level of the tree. To achieve this, when the new node is inserted, we assign it the same level
number as its parent. This is equivalent to saying that the newly inserted node is red (see
Fig. 5(a)).

33

5

(a)

9

7

insert(5)

3

9

7
p

skew(p)

9

split(q)

p

7

q
7

3

7

5 9

. . .

!! !!

(b) (c) (d)

5

Fig. 5: AA insertion: (a) Initial tree, (b) after insertion, (c) after skewing, (d) after splitting.

The first problem might arise is that this newly inserted red node is a left child, which is
not allowed (see Fig. 5(b)). Letting p denote the node’s parent, this is easily remedied by
performing skew(p) (see Fig. 5(c)). Let q be the pointer to the resulting subtree.

Next, it might be that p already had a right child that was red, and the skew could have
resulted in a right-right chain starting from q. (This is equivalent to having a 4-node in a 2-3

Lecture 7 4 Fall 2020



CMSC 420 Dave Mount

tree.) We remedy this by invoking the split operation on q (see Fig. 5(d)). Note that the split
operation moves the middle node of the chain up to the next level of the tree. The problems
that we just experienced may occur with this promoted node, and so the skewing/splitting
process generally propagates up the tree to the root.

The insertion function is provided in the following code block. Observe that (as with the AVL
tree) the function is almost the same as the standard (unbalanced) binary tree insertion except
for the final rebalancing step, which is performed by the call “return split(skew(p))”.
(This simplicity is the principle appeal of AA-trees over traditional red-black trees.)

AA Tree Insertion
AANode insert(Key x, Value v, AANode p) {

if (p == nil) // fell out of the tree?

p = new AANode(x, v, 1, nil, nil); // ... create a new leaf node here

else if (x < p.key) // x is smaller?

p.left = insert(x, v, p.left); // ...insert left

else if (x > p.key) // x is larger?

p.right = insert(x, v, p.right); // ...insert right

else

throw DuplicateKeyException; // duplicate key!

return split(skew(p)); // restructure and return result

}

An example of insertion is shown in Fig. 6. (See the lecture on 2-3 trees for the analogous
process.)

2

1 3 9 14

4

8
12

5
7

insert(6)

2

1 3 9 14

4

8
12

5
7

6

skew

2

1 3 9 14

4

8
12

5
6

7!!

2

1 3 9 14

4

8
12

5

6

!!

!!2

1 3 9 14

4

6
8

5

12

split

7

4

6

8

5 7

2

1 3

12

9 14

split skew

7

!!

Fig. 6: Example of AA-tree insertion. (Remember, a node is red if it is at the same level as its
parent.)

AA-tree deletion: As usual deletion is more complex than insertion. If this is not a leaf node,
we find a suitable replacement node. (This will either be the inorder predecessor or inorder
successor, depending on the tree’s structure.) We copy the contents of the replacement
node to the deleted node and then we proceed to delete the replacement. After deleting the
replacement node (which must be a leaf), we retrace the search path towards the root and
restructure as we go.

Lecture 7 5 Fall 2020



CMSC 420 Dave Mount

Before discussing deletion, let’s first consider a useful utility function. In the process of
deletion, a node can lose one of its children. As a result, we may need to decrease this
node’s level in the tree. To assist in this process we define two functions. The first, called
updateLevel(p), updates the level of a node p based on the levels of its children. Every node
has at least one black child, and therefore, the ideal level of any node is one more than the
minimum level of its two children. If we discover that p’s current level is higher than this ideal
value, we set it to its proper value. If p’s right child is a red node (that is, p.right.level ==

p.level prior to the adjustment), then the level of p.right needs to be decreased as well.

AA-Tree update level utility
void updateLevel(AANode p) { // update p’s level

int idealLevel = 1 + min(p.left.level, p.right.level);

if (p.level > idealLevel) { // is p’s level too high?

p.level = idealLevel; // decrease its level

if (p.right.level > idealLevel) // is p’s right child red?

p.right.level = idealLevel; // ...pull it down as well

}

}

When the restructuring process arrives at a node p, we first fix its level using updateLevel(p).
Next we need to skew to make sure that any red children are to its right. Deletion is com-
plicated in that we may generally need to perform up to three skew operations to achieve
this: one on p, one on p.right, and one on p.right.right (see Fig. 7). After this, p may
generally be at the top of a right-leaning chain consisting of p followed by four red nodes.
To remedy this, we perform two splits, one at p, and the other to its right-right grandchild,
which becomes its right child after the first split (see Fig. 7). Whew! These splits may not be
needed, but remember that the split function only modifies the tree if needed. The restruc-
turing function, called fixAfterDelete, is presented in the following code fragment. As an
exercise, you might draw the equivalent 2-3 tree both before and after the deletion. You will
discover that, although the intermediate results differ, the final tree is the encoding of the 2-3
tree after the deletion.

AA-Tree Deletion Utility
AANode fixAfterDelete(AANode p) {

updateLevel(p); // update p’s level

p = skew(p); // skew p

p.right = skew(p.right); // ...and p’s right child

p.right.right = skew(p.right.right); // ...and p’s right-right grandchild

p = split(p); // split p

p.right = split(p.right); // ...and p’s (new) right child

return p;

}

Finally, we can present the full deletion code. It looks almost the same as the deletion code for
the standard binary search tree, but after deleting the leaf node, we invoke fixAfterDelete

to restructure the tree. We will omit the (messy) details showing that after this restructuring,
the tree is in valid AA-form. (We refer you to Anderson’s original paper.)

Analysis: All of these algorithms take O(1) time per level of the tree, which implies that the
running time of all the dictionary operations is O(h) where h is the height of the tree. As we

Lecture 7 6 Fall 2020



CMSC 420 Dave Mount

1 7 115

delete(1)
4

96

14 17

16

13

3

2

7 115

4

96

14 17

16

13

3

2
!!

7 115

4

96

14 17

16

13

3

!!updateLevel

2

7 115

4

96

14 17

16

13

32

updateLevel

7 115

4
139

14 17

16
6

32

skew
skew

skew

7 115 14 17

6 13

4

32

9 16

split
split

split

!!
!!

Fig. 7: Example of AA-tree deletion. (Remember, a node is red if it is at the same level as its
parent.)

AA Tree Deletion
AANode delete(Key x, AANode p) {

if (p == nil) // fell out of tree?

throw KeyNotFoundException; // ...error - no such key

else {

if (x < p.key) // look in left subtree

p.left = delete(x, p.left);

else if (x > p.key) // look in right subtree

p.right = delete(x, p.right);

else { // found it!

if (p.left == nil && p.right == nil)// leaf node?

return nil; // just unlink the node

else if (p.left == nil) { // no left child?

AANode r = inorderSuccessor(p); // get replacement from right

p.copyContentsFrom(r); // copy replacement contents here

p.right = delete(r.key, p.right); // delete replacement

}

else { // no right child?

AANode r = inorderPredecessor(p); // get replacement from left

p.copyContentsFrom(r); // copy replacement contents here

p.left = delete(r.key, p.left); // delete replacement

}

}

return fixAfterDelete(p); // fix structure after deletion

}

}

Lecture 7 7 Fall 2020



CMSC 420 Dave Mount

saw abow, the tree’s height is O(log n) height, which implies that all the dictionary operations
run in O(log n) time.

Lecture 7 8 Fall 2020


