Weight Balance:
- Given a set of keys
 \(X = \{x_0, \ldots, x_{n-1}\} \)
- and values
 \(V = \{v_0, \ldots, v_{n-1}\} \)
- and weights
 \(W = \{w_0, \ldots, w_{n-1}\} \)
- Assume:
 \(x_0 < x_1 < \ldots < x_{n-1} \) sorted

Overview:
- Splay trees - Static
 - Optimal
 - More frequently accessed
 - keys closer to root

\(\Rightarrow \) Weight-balanced
 - trees

Implementation: (as extended BST)

Internal node:
- Stores:
 - Key key
 - \(\rightarrow \) splitter
 - float wt \(\rightarrow \) total
 - weight of
 - entries in subtree

Left, right

External Node:
- Key key,
- \(\leftarrow x_i \)
- Value value
- float wt \(\leftarrow w_i \)

How to (Nearly) Achieve Shannon's bound
- Weight-balanced
 - tree

\(\rightarrow \) For each node \(p \):
 - \(wt(p) = \text{total weight} \)
 - of keys in \(p \) subtree

balance(\(p \)) = \(\max(wt(p.\text{left}), wt(p.\text{right})) \)

\(\frac{wt(p)}{wt(p)} \)

Given \(\frac{1}{2} \leq \alpha \leq 1 \), a BST

is \(\alpha \)-balanced if

for all internal nodes \(p \),

\(\text{balance}(p) \leq \alpha \)

\(\alpha = \frac{1}{2} \): Perfectly balanced

\(\alpha = 1 \): Arbitrarily bad

\(\alpha = \frac{2}{3} \): A reasonable

compromise

Pseudo-Probability:
- Let: \(W = \sum_{i=0}^{n-1} w_i \) total weight
- Let: \(p_i = \frac{w_i}{W} \)
 - pseudo-prob
- Obs: \(0 < p_i \leq 1 \)\(\Rightarrow \) discrete
 - \(\sum_i p_i = 1 \)
 - prob. distribution

Shannon's Theorem: If \(p_i \) is
the prob. of accessing \(x_i \),
any BST has expected search
at least \(\sum_i p_i \log p_i \) \(\leftarrow \) (called
the entropy of distrib)
Balance by Rebuilding:
Given an array $A[0..k-1]$ of external nodes:
- Assume $A[i].key$, $A[i].value$,
- Assume $A[i].wt$
- Assume keys are sorted
- Assume weights > 0

How to maintain balance?
Options:
- Rotations: Similar to AVL trees (single / double)
- Rebuild subtrees: Similar to scapegoat

Example:
- Given an array $A[0..k-1]$
- Let $\Delta_{min} = |(12+4)-(3+2+4)| = 2$
- $\overline{W} = 16$

Weight-balanced trees:
- Select splitter to minimize weight difference
- Let $\overline{W} = \sum_{i=0}^{k-1} A[i].wt$ (Total weight)
- Let $\overline{W}_{i,j} = \sum_{m=i}^{j-1} A[i].wt$ (Partial weight)
- Let $\Delta_j = |\overline{W}_{0,j} - \overline{W}_{j,k}|$ (Absolute weight difference)
- Goal: Split at $0 \leq j < k$ that minimizes $\Delta_{min} = \min_j \Delta_j$

$buildTree(A[0..k-1])$
- If ($k = 1$) return $A[0]$/base case*/
- $\overline{W} = \sum_{i=0}^{k-1} A[i].wt$/*total weight*/
- Init: $b = 0$; $Lut = 0$; $Rut = \overline{W}$; $\Delta_{min} = \overline{W}$
- For ($i = 0..k-1$)
 - $\Delta = |Rut - Lut|$/weight difference*/
 - If ($\Delta < \Delta_{min}$)
 - $b = i+1$; $\Delta_{min} = \Delta$
 - $L = buildTree(A[0..b-1])$; $R = buildTree(A[b..k-1])$
 - Return new Int Node($A[b].key$, L, R)
But it is pretty close! 😊

Theorem: (Mehlhorn '77)
The above balanced split algorithm produces a tree whose exp. search time is
\[\leq H + 3 \]
where \(H \) = entropy bound.

Dictionary Operations:
→ Balance by destroying + rebuilding - **Jackhammer Trees**

Find: Same as usual. Tree height \(\leq \log_2 n \), so \(O(\log n) \) time guaranteed.

Insert/Delete: Start same as standard BST
→ After operation completes check + rebuild

Analysis:
Does this algorithm produce the optimal tree (w.r.t. expected case search time)?

- No. 😞 The optimal BST can be computed by dynamic programming

Weight-Balanced Trees III

Check & Rebuild:
→ When returning from recursive calls, update each node's weight
\[p.wt \leftarrow p.left.wt + p.right.wt \]
→ Starting at root, walk down search path. Stop at first node \(p \) s.t.
\[\text{balance}(p) > \alpha \]

Given by designer e.g. \(\alpha = 2/3 \)

→ If no such \(p \) found - Great! Tree is balanced
Else: **Jackhammer**!
→ Traverse \(p \)'s subtree in order, store external nodes in array \(A[0..k-1] \)
→ Replace \(p \)'s subtree with \(\text{buildTree}(A) \)

Bad weight distributions?
- If a weight is very large relative to neighbors, rebalance may be ineffective

Lemma: If weights are "nice" (not too much variation), insert + delete run in \(O(\log n) \) amortized time.
Very heavy entries:
- If an entry’s weight is too high, rebuilding is ineffective.
- Example:

```
    5
   / \
   a   b
  /     \
 /       8
1       c
1       1
```
- This tree is best possible!

Exemption: Don’t rebuild if a key’s weight is very high.

For node p:
\[
\text{max}(p) = \text{max weight in p's subtree}
\]
\[
\text{max-ratio}(p) = \frac{\text{max}(p)}{\text{weight}(p)}
\]

Given parameter \(0 < \beta < 1\), a node is \(\beta\)-exempt if \(\text{max-ratio}(p) > \beta\).

Dictionary Operations:
- **find:** as usual
- **insert:** insert as usual but rebuild if needed
- **delete:** delete as usual but rebuild if needed

When to rebuild?
- When “backing out” from insert/delete, update node weights.
- Walk down search path from root [opposite from scapegoat!]
- If any node \(p\) is out of balance:
 \[
 \text{balance}(p) > \alpha \\
 \text{and} \\
 \text{max-ratio}(p) \leq \beta
 \]
 then:
 - Rebuild \(p\)
 - Traverse \(p\)’s subtree inorder
 - Collect external nodes in array \(A[0..k-1]\)
 - replace \(p\) with \(\text{buildTree}(A)\)

Lemma:
For any set of weighted entries, \(\exists\) an \((\alpha, \beta)\)-balanced \(B\)Tree if
\[
\frac{1}{2} < \alpha < 1 \quad \text{and} \quad \beta < 2\alpha - 1
\]

Weight-Balanced Trees IV