Can we do better?

Range Trees:
- Space is $O(n \log^d n)$
- Query time:
 - Counting: $O(\log^d n)$
 - Reporting: $O(k + \log^d n)$
- In \mathbb{R}^2: log $^2 n$ much better than log n for large n
- Range trees are more limited

Recap:
- kd-Tree: General-purpose data structure for pts in \mathbb{R}^d
- Orthogonal range query:
 - Count/report pts in axis-aligned rect.
 - kd-Tree: Counting: $O(\log n)$ time
 - Reporting: $O(k + \log n)$ time
- Call this a 1-Dim Range Tree:

Claim: A 1-D range tree with n pts has space $O(n)$ and answers 1-D range count/report queries in time $O(\log n)$ (or $O(k + \log n)$)

Layering: Combing search structures
- Suppose you want to answer a composite query w. multiple criteria:
- Medical data: Count subjects
 - Age range: $a_{i_0} \leq age \leq a_{i_d}$
 - Weight range: $w_{i_0} \leq weight \leq w_{i_d}$
- Design a data structure for each criterion individually
- Layer these structures together to answer full query

1-Dim Range Tree:
- Q_{i_0} to Q_{i_d}
- Approach:
 - Balanced BST (e.g. AVL, RB,
 - Assume extended tree
 - Each node p stores no. of entries in subtree: $p.size$
- Canonical Subsets:
 - Goal: Express answer as disjoint union of subsets
 - Method: Search for $Q_{i_0} + Q_{i_d}$ take maximal subtrees
Recursive helper:
\[\text{int range1Dx(Node p, Intv Q=[Q_L, Q_R], Intv C=[x_L, x_R])} \]

Initial call: \(\text{range1Dx(root, Q, C_0)} \)

More details:
Given a 1-D range tree \(T \):
- Let \(Q=[Q_L, Q_R] \) be query interval
- For each node \(p \), define interval cell \(C=[x_L, x_R] \) s.t. all pts of \(p \)'s subtree lie in \(C \)

Cases:
- \(p \) is external:
 - if \(p \.pivot.x \in Q \rightarrow 1 \) else \(\rightarrow 0 \)
- \(p \) is internal:
 - \(C \subseteq Q \Rightarrow \text{all of } p \text{'s pts lie within query} \)
 \(\rightarrow \text{return } p \text{'s size} \)
 - \(C \) is disjoint from \(Q \Rightarrow \text{none of } p \text{'s pts lie in } Q \)
 \(\rightarrow \text{return } 0 \)
 - Else partial overlap
 \(\rightarrow \text{Recurse on } p \text{'s children} \)
 + trim the cell

\[\text{int range1Dx(Node p, Intv Q, Intv C=[x_L, x_R])} \] \(\{
\)
 if (\(p \) is external) \(\rightarrow 1 \)
 else if (\(C \subseteq Q \)) return \(p \) pivot \(x \in Q \) \(\rightarrow 0 \)
 else if (\(Q \cap C \) disjoint) return 0
 else return
 range1Dx\(p \).left, Q, [x_L, p pivot x]
 + range1Dx\(p \).right, Q, [p pivot x, x_R]
\[\}

2-D Range Searching:
- Layer a range tree for \(x \) with range tree for \(y \)
- For each node \(p \) \(\in \) 1-D \(x \) tree, let \(S(p) \) = set of pts in \(p \) 's subtree
- Def: \(p _aux \): A 1-D \(y \) tree for \(S(p) \)

Analysis:
Lemma: Given a 1-D range tree with \(n \) pts, given any interval \(Q \), can compute \(O(\log n) \) subtree whose union is answer to query.

Thm: Given 1-D range tree... can answer range queries in time \(O(\log n) \) \(\rightarrow (k \text { to report}) \)
Answering Queries?

- **Given query range** $Q = [Q_{lo,x}, Q_{hi,x}] \times [Q_{lo,y}, Q_{hi,y}]$
- **Run range1Dx** to find all subtrees that contribute
 - For each such node p:
 - Run range1Dy on p.aux
 - Return sum of all result

2D Range Tree:

- Construct 1D range tree based on x coord for all pts
- For each node p:
 - Let $S(p)$ be pts of p.tree
 - Build 1D range tree for $S(p)$ based on $y \rightarrow p$.aux
- Final structure is union of x-tree $+ (n^{-1})$ y-trees

Higher Dimensions?

- In d-dim space, we create d-layers
- Each recurses one dim lower until we reach 1-d search
- Time is the product:
 $\log n \cdot \log n \cdots \log n = \mathcal{O}(\log^d n)$

Analysis: The 1D x search takes
- of $\mathcal{O}(\log n)$ time & generates
- $\mathcal{O}(\log n)$ calls to 1D y search
- \Rightarrow Total: $\mathcal{O}(\log n \cdot \log n) = \mathcal{O}(\log^2 n)$

Analysis:

- Invoked $\mathcal{O}(\log n)$ times - once per maximal
- Invoked $\mathcal{O}(\log n)$ times - once for each ancestor of max subtree

Intuition: The x-layer finds sub-trees p contained in x-range & each aux tree filters based on y.