Tries:
- de la Briandais (1959)
- Fredkin: “trie from retrieval”
- Pronounced like “try”

Digital Search:
- Keys are strings over some alphabet \(\Sigma \)
 - Eq. \(\Sigma' = \{a, b, c, \ldots\} \)
 - \(\Sigma' = \{0, 1\} \) Let \(k = |\Sigma'| \)
- Assume chars coded as ints: \(a = 0, b = 1, \ldots z = k - 1 \)

Example:
\[\Sigma' = \{a = 0, b = 1, c = 2\} \]
Keys: \{aab, aba, abc, caa, cab, cbc\}

Tries and Digital Search Trees I

Node: Multiway of order \(k \)

Analysis:
- Space: Smaller by factor \(k \)
- Search Time: Larger by factor of \(k \)

Example:
![Example Diagram]

How to save space?
- Store 1 char. per node

Analysis:
- Search: \(\sim \) length of query string \([O(1) \text{ time per node}] \)
- Space:
 - No. of nodes \(\sim \) total no. of chars in all strings
 - Space \(\sim k \cdot (\text{no. of nodes}) \)

Same structure/Alt. Drawing

Search:
- First-child/next-sibling

Next sibling:
- Advance to next character of search string

Next character:
- \(\rightarrow \neq x \rightarrow \text{try next char in } \Sigma' \)
- \(= x \rightarrow \text{advance to next character of search string} \)
Patricia Tries:
- Improves trie by compressing degenerate paths
- \text{PATRICIA} = \text{Practical Alg. to Retrieve Info. Coded in Alpha...}
- Late 1960's: Morrison & Guchenerberger
- Each node has index field, indicates which char to check next (Increase with depth)

Dealing with long Paths:
- To get both good space and query time efficiency, need to avoid long degenerate paths.
- Path compression!

Example: ID

\text{Example: } S = \text{pamapajaman}$

Def: Substring identifier for S_i: is shortest prefix of S_i unique to this string

S_i = amap$ E.g. \text{ID}(S_i) =$ "amap"

ID

Suffix Trees:
- Given single large text S
- Substring queries: "How many occurrences of "tree" in CMSC 420 notes"

Notation: $S^t = a_0a_1a_2...a_{n-1}$

- Suffix: $S_i = a_ia_{i+1}...a_{n-1}$
- Special terminal
- Q: What is minimum substring needed to identify suffix S_i?
Example: $S = \text{pama pajama}$

Suffix Trees (cont.)

Example: $S = \text{pama pajama}$

PR k-d tree: Can be used for answering same queries as point k-d tree (orth: range, near neigh)

Geometric Applications:

PR kd-Tree: k-d tree based on midpoint subdivision

Assume points lie in unit square

Example:

Example: $S = \text{pama pajama}$

E.g. ID(S_i) = amap ID(S_i) = ama$

Substring Queries:

How many occurrences of t in S?

- Search for target string t in trie
 - if we end in internal node (or midway on edge) - return no. of extern. nodes in this subtree
 - else (full of on extern node)
 - compare target with string
 - if matches - found 1 occurrence
 - else - no occurrences

Tries and Digital Search Trees III

Analysis:

- Space: $O(n)$ nodes
- $O(n \cdot k)$ total space ($k = \Sigma | = O(1)$)
- Search time: \sim to length of target string
- Construction time: $O(n \cdot k)$ [nontrivial]

Claim: This is a trie!

Some cells may be empty
Binary Encoding:
- Assume our points are scaled to lie in unit square $0 \leq x, y < 1$ (can always be done)
- Represent each coordinate as binary fraction:
 $x = 0.a_1 a_2 a_3 \ldots, a_i \in \{0, 1\}$
 $x = \sum a_i \cdot 2^{-i}$

Example:

How do we extend to 2-D?

PR kd-Tree \equiv Trie ??

- Approach: Show how to map any point in \mathbb{R}^2 to bit string
- Store bit strings in a trie (alphabet $\Sigma = \{0, 1\}$)
- Prove that this trie has same structure as kd-tree

Further Remarks:
- Techniques for efficiently encoding, building, serializing, compressing...
- Can generalize immediately to PR kd-tree

Tries and Digital Search Trees IV

Bit Interleaving:

Given a point $p = (x, y)$
$0 \leq x, y < 1$

Let:
- $x = 0.a_1 a_2 \ldots$ in binary
- $y = 0.b_1 b_2 \ldots$

Define:

$$\phi(x, y) = a_1 b_1 a_2 b_2 \ldots$$

Called Morton Code of p

Lemma: Given a pt set $P \subseteq \mathbb{R}^2$ (in unit square $[0, 1]^2$) let $P = \{p_1, \ldots, p_n\}$ where $p_i = (x_i, y_i)$
Let $\phi(P) = \{\phi(p_1), \phi(p_2), \ldots, \phi(p_n)\}$ (n binary strings)
Then the PR kd-tree for P is equivalent to binary trie for $\phi(P)$.

Proof: By induction on no. of bits
Let $x = 0.a_1 a_2 \ldots$ and consider just $\phi(x, y) = a_1 b_1 a_2 b_2 \ldots$

The PR kd-tree + binary trie assigns pts to same subtrees (\ldots induction)