
Fall 2020
CMSC 420

Samet

ASSIGNMENT NUMBER 1

1. In the lecture we showed how two stacks can be made to share one segment of memory
when using sequential allocation. Can you do the same for two queues, or a queue
and a stack? If not, explain why.

2. Give all the possible ways of topologically sorting the set of relations A<B, F<B, D<B,
G<F, G<E, E<D, F<D, E<C, D<C, B<C.

3. The algorithm we described in class for implementing the topological sort makes use
of a queue to keep track of the nodes whose PRED COUNT field has become zero and
hence are ready to be output. Recall that these are the nodes whose direct successors
have not yet been output. Can you use a stack instead of a queue? Give such an
algorithm using pseudocode.

4. Suppose that ptr1 and ptr2 point to the last elements of disjoint circular lists l1 and
l2, respectively. The lists l1 and l2 are interpreted as having their elements to the left
of ptr1 and ptr2, respectively. In other words, NEXT(ptr1) and NEXT(ptr2) point to
the first elements of l1 and l2, respectively. l1 is inserted to the right of l2 as follows:

if ptr2 6= λ then

begin

if ptr1 6= λ then NEXT(ptr1)↔ NEXT(ptr2);
ptr1← ptr2;
ptr2← λ;

end;;

What happens if both ptr1 and ptr2 point to nodes in the same circular list?

5. How would you represent a circular list in such a way that it can be traversed efficiently
in both directions, yet only use one link field per node. Hint: Note that if you are
given two pointers to successive nodes ai−1 and ai, then you can locate nodes ai−2

and ai+1. You may also wish to manipulate the bit representation of the pointers.

6. Explain why it is difficult to implement a general deque with a singly-linked list.

7. Define a tridiagonal matrix M as a matrix whose diagonal elements are non-zero as
are the diagonals to its left and right. All remaining elements are zero. Formally,
element M [i, j] is non-zero when |i − j| ≤ 1 for 1 ≤ i, j ≤ n. Show that there is a
way to allocate memory sequentially for a tridiagonal matrix M so that only 3n − 2
locations are occupied. In particular, find constants c0, c1, c2 for an access function
of the form

location(M [i, j]) = c0 + c1i+ c2j |i− j| ≤ 1.

8. Suppose that the elements of a two-dimensional array are ordered in such a way as
to make it easy to expand the array’s size by powers of 2 without having to move
existing elements. In particular, the doubling occurs in cycles so that we double
the size across the different dimensions in a cyclic manner (assume, without loss of
generality, that we double the number of columns before we double the number of
rows). For example, suppose that the array is initially of size 4 × 4. Thus the array
is subsequently expanded to be 4× 8, 8× 8, 8× 16, 16× 16, etc. For the 4× 4 array,
we have the following order:

0 1 4 6
2 3 5 7
8 9 10 11
12 13 14 15

While for the 4× 8 array, we have the following order:

0 1 4 6 16 20 24 28
2 3 5 7 17 21 25 29
8 9 10 11 18 22 26 30
12 13 14 15 19 23 27 31

What is the access function for element A[i, j] assuming a 2a × 2b array where a and
b differ by at most one and that the first element is A[0, 0] and is located at location
0? The key to determining the location at which A[i, j] is stored is to determine
the expansion step m at which A[i, j] was allocated (i.e., which doubling step). In
particular, you must distinguish between even and odd doubling steps (i.e., m = 2k or
m = 2k+ 1). For example, element A[1, 2] is allocated in the third doubling step (i.e.,
m = 3) at which time elements 4–7 (i.e., A[0, 2], A[1, 2], A[0, 3], A[1, 3]) were allocated,
while element A[2, 2] was allocated in the fourth doubling step (i.e., m = 4) at which
time elements 8–15 (i.e., A[2, 0], A[2, 1], A[2, 2], A[2, 3], A[3, 0], A[3, 1], A[3, 2], A[3, 3])
were allocated. Your answer should be in terms of i, j, and k.

