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Abstract

In this assignment you are required to implement an information management system for handling data
similar to that used in computer graphics applications. In such an environment the data is often in the form
of a collection of lines which is used to define objects. Line segments can be combined to form polygons. We
are interested in the problem of managing a large collection of polygons which we term a polygonal map. Our
goal is to store these maps without the information loss that usually results from the digitization process that
is inherent to a raster-based graphics system. In this assignment we first trace the development of a variant
of the quadtree data structure that has been found to be suitable for such a problem. Next, we outline an
assignment which you are to program. In particular, your task is to implement this data structure in such a
way that a number of operations used in computer graphics can be efficiently handled. An example JAVA
applet for the data structure can be found on the home page of the class.1

1Copyright c©2020 by Hanan Samet. No part of this document may be reproduced, stored in a retrieval system, or transmitted,
in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the express prior permission
of the author.
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1 REGION-BASED QUADTREES

The quadtree is a member of a large class of hierarchical data structures that are based on the principle
of recursive decomposition. As an example, consider the point quadtree of Finkel and Bentley [3] which
should be familiar to you as it is simply a multidimensional generalization of a binary search tree. In two
dimensions each node has four subtrees corresponding to the directions NW, NE, SW, and SE. Each subtree
is commonly referred to as a quadrant or subquadrant. For example, see Figure 2 where the correspondence
of a quadtree of 8 nodes to the data of Figure 1 is presented. In our presentation we shall only discuss two-
dimensional quadtrees although it should be clear that what we say can be easily generalized to more than
two dimensions. For the point quadtree, the points of decomposition are the data points themselves (e.g., in
Figure 2, Chicago at location (35,40) subdivides the two dimensional space into four rectangular regions).
Requiring the regions to be of equal size leads to a variant of the region quadtree of Klinger [5,6,8,9]. This
data structure was developed for representing homogeneous spatial data and is used in computer graphics,
image processing, geographical information systems, pattern recognition, and other applications. Its use in
computer graphics is rooted in the work of Warnock [11] who applied it to hidden surface elimination. For
a good introduction to computer graphics, see the texts by Foley, van Dam, Feiner, and Hughes [4] and
Newman and Sproull [7].

Name x y
Chicago 35 42
Mobile 52 10
Toronto 62 77
Buffalo 82 65
Denver 5 45
Omaha 27 35
Atlanta 85 15
Miami 90 5

Figure 1: Sample list of cities with their x and y coordinate values.

As an example of the region quadtree, consider the region shown in Figure 3a which is represented by
a 23 × 23 binary array in Figure 3b. Observe that 1s correspond to picture elements (termed pixels) which
are in the region and 0s correspond to picture elements that are outside the region. The region quadtree
representation is based on the successive subdivision of the array into four equal-size quadrants. If the array
does not consist entirely of 1s or 0s (i.e., the region does not cover the entire array), then we subdivide
it into quadrants, subquadrants, ... until we obtain blocks (possibly single pixels) that consist entirely of
1s or entirely of 0s. For example, the resulting blocks for the region of Figure 3b are shown in Figure 3c.
This process is represented by a quadtree in which the root node corresponds to the entire array, the four
sons of the root node represent the quadrants, and the leaf nodes correspond to those blocks for which no
further subdivision is necessary. Leaf nodes are said to be BLACK or WHITE depending on whether their
corresponding blocks are entirely within or outside of the region respectively. All non-leaf nodes are said to
be GRAY. The region quadtree for Figure 3c is shown in Figure 3d.

2 PR QUADTREES

There are a number of ways of adapting the region quadtree to represent point data. If the domain of data
points is discrete, then we can treat data points as if they are BLACK pixels in a region quadtree. If this
is not the case, then the data points cannot be represented since the minimum separation between the data
points is unknown. This leads us to an adaptation of the region quadtree to point data which associates
data points (that need not be discrete) with quadrants. In order to avoid confusion with the point and
region quadtrees we call the resulting data structure a PR quadtree (P for point and R for region). The PR
quadtree is organized in the same way as the region quadtree. The difference is that leaf nodes are either
empty (i.e., WHITE) or contain a data point (i.e., BLACK) and the values of its coordinates. A quadrant

2



Chicago

Mobile
Toronto

(a)

(b)

MiAtlantaBuffalo

OmahaDenver

(0,100) (100,100)

(100,0)(0,0)

y

x

(5,45)
Denver

(35,42)
Chicago

(27,35)
Omaha

(52,10)
Mobile

(62,77)
Toronto

(82,65)
Buffalo

(85,15)
Atlanta

(90,5)
Miami

Figure 2: A point quadtree and the records it represents corresponding to the data of Figure 1: (a) the
resulting partition of space, and (b) the tree representation.

contains at most one data point. For example, Figure 4 is the PR quadtree corresponding to the data of
Figure 1. Note, that unlike the region quadtree, when a non-terminal node has four BLACK sons, they are
not merged. This is natural since a merger of such nodes would lead to a loss of the identifying information
about the data points. Recall that each data point is different whereas the empty leaf nodes have the absence
of information as their common property and thus they can be safely merged.

2.1 INSERTION

Nodes in the PR quadtree consist of two types of records. The record’s type depends on whether it cor-
responds to a terminal or non-terminal node. This information is stored in the NODETYPE field of the
record. We use P to denote a pointer to the record. Non-terminal nodes have four fields in addition to the
NODETYPE field. These four fields are termed SON(P ,I) where I corresponds to one of the four principal
directions. In addition to the NODETYPE field, terminal nodes have the following three fields. NAME
contains descriptive information about the node (e.g., city name, etc.). XCOORD and YCOORD contain
the x and y coordinate values, respectively, of the data point. We assume that each data point is unique
- i.e., it is associated with just one name. If more than one data point were permitted to have the same
coordinate values, then an overflow list would be required at each data point node. The empty PR quadtree
is represented by a pointer to a WHITE node. .PR In order to cope with data points that lie directly on
one of the quadrant lines emanating from a subdivision point, we adopt the convention that quadrants NE
and SE are closed with respect to the x coordinate and quadrants NW and NE are closed with respect
to the y coordinate. This means that quadrants NW and SW are open with respect to the x coordinate
and quadrants SW and SE are open with respect to the y coordinate. For example, in Figure 4, Mobile
with coordinate values (50,10) lies in quadrant SE of the tree rooted at (50,50). Using this convention, the
function PRCOMPARE, given below, determines the quadrant in which a given data point lies relative to a
grid subdivision point.

Data points are inserted into a PR quadtree by searching for them. First, an appropriate record is formed
for the data point. Next, we search for the desired record based on its x and y coordinate values using the
function PRCOMPARE to guide the search. If a record with the same x and y coordinate values already
exists, then we replace it with the new record. Actually we don’t search for the record. Instead, we search
for the quadrant in which the record, say A, belongs (i.e., a leaf node). If the quadrant is already occupied
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Figure 3: An example of (a) a region, (b) its binary array, (c) its maximal blocks (blocks in the region are
shaded), and (d) the corresponding tree.
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Figure 5: Sequence of partial block decompositions showing how a PR quadtree is built when adding (a)
Chicago, (b) Mobile, (c) Toronto, and (d) Buffalo corresponding to Figure 1.
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Figure 6: Relationship between a circular search space and the regions in which a root of a point quadtree
may reside.

by another record with different x and y coordinate values, say B, then we must subdivide the quadrant
repeatedly (termed splitting) until nodes A and B no longer occupy the same quadrant.

Algorithm 1: PRCOMPARE(P,X,Y)

1 if XCOORD(P) < X then
2 if YCOORD(P) < Y then return SW ;
3 else return NW ;

4 else
5 if YCOORD(P) < Y then return SE ;
6 else return NE ;

7 end

This may result in many subdivisions especially if the two points are both contained in a very small
quadtree block. A necessary but not sufficient condition for this situation to arise is that the Euclidean
distance between A and B is very small. As a result, we observe that every non-terminal node in a PR
quadtree of a data set consisting of more than one data point has at least two descendant leaf nodes that
contain data points. It should be clear that the shape of the resulting PR quadtree is independent of the
order in which data points are inserted into it. However, the shapes of the intermediate trees do depend on
the order. For example, the tree in Figure 4 was built for the sequence Chicago, Mobile, Toronto, Buffalo,
Denver, Omaha, Atlanta, and Miami. Figures 5a, 5b, 5c, and 5d show how the tree was constructed in an
incremental fashion for Chicago, Mobile, Toronto, and Buffalo.

2.2 DELETION

Deletion of nodes in PR quadtrees is considerably simpler than deletion in point quadtrees since in the PR
quadtree all records are stored in the leaf nodes. This means that there is no need to be concerned with
rearranging the tree as is necessary when records stored in non-terminal nodes are being deleted from point
quadtrees. For example, to delete Mobile from the PR quadtree in Figure 4 we simply set the SW son of its
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Figure 8: PM1 quadtree corresponding to
the polygonal map of Figure 7.

father node, D, to point to an empty leaf node (i.e., WHITE). Deleting Toronto is slightly more complicated.
Setting the NW son of its father node, B, to to point to an empty leaf node (i.e., WHITE) is not enough since
now we violate the property of the PR quadtree that each non-terminal node in a PR quadtree of more than
one record has at least two descendant leaf nodes that contain data points. Thus we must also reset the NE
son of A to point to Buffalo and return non-terminal node B to the free storage list. This process is termed
collapsing and is the counterpart of the splitting operation that was necessary when inserting a record in a
PR quadtree. Note that collapsing may take place over several levels and is only applicable when the deleted
node has exactly one brother that is a terminal node and no brothers that are non-terminal nodes. When
this condition is satisfied, we can perform the collapsing process repeatedly until encountering the nearest
common ancestor that has more than one son. As collapsing occurs, the affected non-terminal nodes are
returned to the free storage list. As an example, suppose we delete Mobile and Atlanta in sequence from
Figure 4. The subsequent deletion of Atlanta results in Miami meeting the conditions for collapsing to take
place. Miami’s nearest ancestor with more than one son is A. The result of the collapsing of Miami is that
Miami becomes the SE son of A and non-terminal nodes D and F become superfluous and are returned to
the free storage list.

2.3 SEARCH

Quadtrees are especially attractive in applications that involve search. A typical query is one that requests
the determination of all nodes within a specified distance of a given data point - e.g., all cities within 50
miles of Washington, D.C. The efficiency of the quadtree data structure lies in its role as a pruning device
on the amount of search that is required. Thus many records will not need to be examined. As an example,
we use the PR quadtree of Figure 4. Suppose that in the hypothetical data base of Figure 1 we wish to find
all cities within 8 units of a data point with coordinate values (82,10). In such a case, there is no need to
search the NW, NE, and SW quadrants of the root (i.e., node A with coordinate values (50,50)). Thus, we
can restrict our search to the SE quadrant of the tree rooted at node A. Similarly, there is no need to search
the NW and NE quadrants of the tree rooted at node D (i.e., coordinate values (75,25)).

As a further clarification of the amount of pruning of the search space that is achievable by use of
quadtrees we make use of Figure 6. In particular, given the problem of finding all nodes within radius r of
point A, use of the Figure indicates which quadrants need not be examined when the root of the search space,
say R, is in one of the numbered regions. For example, if R is in region 9, then all but its NW quadrants
must be searched. Similarly, if R is in region 7, then the subsequent search can be restricted to the NW and
NE quadrants of R.
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3 PM QUADTREES

The PM quadtree is a term we use to collectively describe a number of related quadtree-like data structures
devised by Samet and Webber [10] for representing a large collection of lines for application in computer
graphics and cartography that are raster-based. The goal is to have an exact representation of the lines - not
an approximation as is usually the case due to the digitization process which is inherent to a raster-based
graphics system. Some common applications include the determination of the boundary of the region in
which a point lies, the determination of the boundaries of all regions lying within a given distance of a point,
and overlaying two maps. Samet and Webber propose a number of variants of the PM quadtree. In this
assignment we focus on the PM1 quadtree. The PM1 quadtree is organized in a similar way to the region
and PR quadtrees. A region is repeatedly subdivided into four equal-size quadrants until we obtain blocks
which do not contain more than one line. In order to be able to deal with lines that intersect other lines
we say that if a block contains a point, say P , then we permit it to have more than one line provided that
P is an endpoint of each of the lines it contains. A block can never contain more than one endpoint. For
example, Figure 8 is the block decomposition of the PM1 quadtree corresponding to the polygonal map of
Figure 7 while Figure 9 is its tree representation.

The above definition of a PM1 quadtree can be made more rigorous by viewing the polygonal map as a
straight-line planar graph consisting of vertices and edges. We use the term q-edge (denoting a quadtree-
decomposition edge) to refer to a segment of an edge that is formed by clipping an edge of the polygonal
map against the border of the region represented by a quadtree node (e.g., FG and GH in Figure 8). It
should be clear that every edge (i.e., line segment) of the map is covered by a set of q-edges that only touch
at their endpoints. For example, edge EB in Figure 8 consists of the q-edges EF, FG, GH, HI, IJ, JK, and
KB. At this point, we can restate the definition of a PM1 quadtree as satisfying the following conditions: .sp
.np At most one vertex can lie in a region represented by a quadtree leaf. .np If a region contains a vertex,
then it can contain no q-edge that does not include that vertex. .np If a region contains no vertices, then it
can contain at most one q-edge. .np Each region’s quadtree leaf node is maximal.

It should be clear that our definition of a PM1 quadtree is very similar to that of a PR quadtree with
the difference that we are representing edges rather than points. This has an effect on the definition of what
action to take when a vertex lies on the border of a quadtree node. We could always move the vertices so that
this doesn’t happen, but generally this requires global knowledge about the maximum depth of the quadtree
prior to its construction. Alternatively, we could also establish the convention that some sides of the region
represented by a node are closed and other sides are open (as done for the PR quadtree), but this can lead
to implementation difficulties when floating point numbers are involved. An additional problem arises when
two pairs of colinear edges (i.e., four in total) meet at a vertex on the border of a quadtree node. The two
edges that are in the open quadrant (i.e., the one not containing the vertex) may have to be decomposed to
a very deep level. Therefore, the convention that is usually adopted is that all quadrants are closed. This
means that a vertex that lies on the border between 2 (or 3 but never more than 4) nodes is inserted in each
of the nodes on whose border it exists. Such vertices can be treated as edges of zero length. Nevertheless,
in order to facilitate your task in this assignment, you will assume that the world is raster-based and thus
each vertex will serve as the center of a 1 × 1 square (see Section 4.3).

3.1 INSERTION

Lines (or edges) are inserted into a PM1 quadtree by searching for the position which they are to occupy.
We assume that the edge does not intersect an existing edge. However, it may intersect an existing vertex.
In particular, an edge is inserted into a PM1 quadtree by traversing the tree in preorder and successively
clipping it against the blocks corresponding to the nodes. Clipping is important because it enables us to
avoid looking at areas where the edge cannot be inserted. If the edge can be inserted into the node (i.e., the
conditions of a PM1 quadtree node are satisfied), say P , then it is done. Otherwise, a list, say L, is formed
containing the edge and any q-edges already present in the node, P is split, and the insertion process is
recursively invoked to attempt to insert the elements of L in the four sons of P . We assume that the empty
polygonal map is represented by a one node tree having no edges.
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Figure 9: Tree representation of the PM1 quadtree corresponding to the polygonal map of Figure 7. All leaf
nodes through which a q-edge passes (with the exception of those that contain a vertex) are shown shaded.

3.2 DELETION

Deletion of an edge from a PM1 quadtree is analogous to the process used for PR quadtrees. The control
structure is identical to that used in the insertion of an edge. Again, the tree is traversed in preorder and the
edge is successively clipped against the blocks corresponding to the nodes. Once a leaf node is encountered
in which the edge participates, the edge is removed from the list of edges associated with the node. The
difference from deletion in a PR quadtree is that a check for collapsing is made at each level of the PM1

quadtree where processing one of the sons of a non-terminal node has resulted in the deletion of a q-edge. In
particular, collapsing can occur if at least one of the sons of a non-terminal node is a terminal node. There
are two situations where collapsing must occur. We shall use as an example the deletion of edge BE from
Figure 7 to illustrate them. In the discussion we refer to nodes in Figures 8 and 9.

The first situation arises when the deletion of an edge has resulted in four brother terminal nodes having
zero or one edge pass through them. In our example, removal of q-edges FG and GH from nodes 26 and 27
leaves non-terminal node 18 with only one edge (i.e., CE) passing through it. This means that collapsing
can be applied after processing the remaining sons of non-terminal node 18. Similarly, removal of q-edges
HI and IJ from nodes 30 and 31 leaves node 19 with only one edge (i.e., CE) passing through it. Once again
collapsing is applied after processing the remaining sons of non-terminal node 19. In fact, further collapsing
is possible at this point since non-terminal node 7 now has only one edge (i.e., CE) passing through it.

The second situation is somewhat tricky. It arises when deletion causes all of the remaining edges in the
descendants of the non-terminal node, say N , to have a common vertex which lies in one of the sons of N
(not a descendant of N who is not a son!). In this case collapsing can occur thereby making N a terminal
node. In our example, removal of q-edge JK from node 22 leaves non-terminal node 10 with only two edges
(i.e., CE and CD) passing through node 25 and having C as a common vertex. Moreover, removal of q-edge
JK also leaves non-terminal node 5 with the three edges BC, CD, and CE passing through it and, again, all
having C as a common vertex. Thus collapsing is applied to the sons of nodes 25, 10, and 5 in succession.
It is very important to note that collapsing can only occur after processing the sons of non-terminal node 5.
The reason it cannot be performed sooner (e.g., in part, after processing the sons of non-terminal node 23
or 10) is that the common vertex (i.e., C) is not in the node whose sons are being collapsed.

3.3 SEARCH

The most common search query is one that seeks to determine the boundary of the polygon in which a given
point lies. A variation of this query is to locate all the boundaries of all of the polygons within a specified
distance of a given data point - e.g., all polygons within 20 units of a point at location (X,Y). Range queries
can also be performed. However, they are more usefully cast in terms of finding the boundaries of all of the
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polygons of a polygonal map that lie within a given area. The test area can be an arbitrary polygon and
usually we wish to know the polygons that are enclosed as well as partially overlapped by the test area. This
is a subproblem of the general map overlay problem. Note that we have not said anything about identifying
the polygons in the search queries aside from their boundaries. The maintenance of polygon labels in a
dynamically changing environment (i.e., when edges are inserted and deleted) is a non-trivial problem. This
issue is addressed further in Section 5. An example JAVA applet for the PM1 quadtree data structure can
be found on the home page of the class.

4 ASSIGNMENT

This assignment is divided into four parts. You should program in the C language. The first part is concerned
with data structure selection. The second part requires the construction of a command decoder. The third
and fourth parts require that you implement a given set of operations.

The first two parts are to be turned in first two weeks (one week for each part). They are worth 25
points in total. There will be NO late submissions accepted for these two parts of the assignment. The data
structure specification is worth 10 points and the command decoder is worth 15 points. While doing parts
one and two you are also to start thinking and coding the program necessary to implement the operations.
This should be done in such a way that the data structure is a BLACK BOX. Thus you need to specify your
primitives in such a way that they are independent of the data structure finally chosen. You are strongly
advised to begin implementing some of the operations. For example, you should implement an output routine
so that you can see whether your program is working properly.

For the third and fourth parts of the assignment, you are to write a C program to implement the data
structure and the specified operations. Together they are worth 175 points. Part three consists of operations
(1)-(7) given below. They are worth 95 points. Part four consists of operations (8)-(11) given below. They
are worth 80 points. Operations (12) and (13) are for extra credit and are to be turned in with part four.
They are worth 30 points.

In order to facilitate grading and your task, you are to use the data structure implementation that will
be given to you in class on the first meeting date after you turn in the first two parts of the assignment. For
any operation that is not implemented, say OP, your command decoder must output a message of the form
THE COMMAND IS NOT IMPLEMENTED in one line.

In order to facilitate your program as well as lend some realism to your task you are to implement the
PM1 quadtree in a raster-based graphics environment. This means that you are dealing with a world of
pixels. For the sake of simplicity, assume that the world is a 27×27 (i.e.,128×128) array of pixels. The pixel
at the lower left corner has coordinate values (0,0) and the pixel at the upper right corner has coordinate
values (127,127). Each pixel serves as the center of a square of size 1×1. This is the smallest unit into which
our quadtrees will decompose the world. At times, the situation may arise that insertion of a line may force
the decomposition to be deeper than 7 levels by virtue of condition (3) of the PM1 uadtree definition. In
this case you should stop subdivision but still insert the line into the node. Note that a line will be specified
in integers (i.e., the coordinate values of its endpoints). In addition, we restrict our lines to have a minimum
horizontal or vertical displacement of one pixel widths. Thus isolated vertices (i.e., pixels) are not permitted.
All lines must have their endpoints in our world of pixels.

One class meeting date before the due date of each part of the project you will be informed of the
availability of and name of the test data file which you are to use in exercising your program for grading
purposes. You should also prepare your own test data. A sample file for this purpose will also be provided.

4.1 DATA STRUCTURE SELECTION

You are to select a data structure to implement the PM1 quadtree. Turn in a definition in the form of a
set of C structures. In doing this part of the assignment you should bear in mind the type of data that
is being represented and the type of operations that will be performed on it. In order to ease your task,
remember that the primitive entity is the line. We specify a line by giving the x and y coordinate values of
its endpoints. The rest of your task is to build on this entity adding any other information that is necessary.
The nature of the operations is described in Sections 4.3-4.5.
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From the description of the operations you will see that a name is associated with each line. At times,
the operations are specified in terms of these names. Thus you will also need a mechanism to efficiently keep
track of these names. It should be integrated with the rest of your data structures.

4.2 COMMAND DECODER

You are to turn in a working command decoder written in C for all the commands (including the optional
ones) given in Sections 4.3-4.5. You are not expected to do error recovery and can assume that the commands
are syntactically correct. All commands will fit on one line. Lengths of names are restricted to 6 characters
or less and can be any combination of letters or digits (e.g., A, 1, 2A, B33, etc.). However, for your own
safety you may wish to incorporate some primitive error handling. Test data for this part of the assignment
will be found in a file specified by the Teaching Assistant.

4.3 PART THREE: BASIC OPERATIONS

(1) [20 points] Initialize the quadtree. The command INIT QUADTREE(WIDTH) is always the first command in
the input stream. WIDTH determines the length of each side of the square are covered by the quadtree. Each
side has the length 2WIDTH. It also has the effect of starting with a fresh data set. This also enables you to
start working with a new polygonal map. The initialization can also be invoked by BUILD QUADTREE(WIDTH),
which is followed by a tree representation. The format of the representation is introduced in the course slides
about alternative quadtree representations (ar6) as well as an appendix on the course web page. Besides
the initialization, you should also be able to output the tree representation of the current quadtree, which
is invoked by ARCHIVE QUADTREE(). It also gives you a quadtree that is correct in case you are not able to
build the quadtree correctly.

(2) [10 points] Generate a display of a 2WIDTH × 2WIDTH square from the PM1 quadtree. It is invoked
by the command DISPLAY(). To draw the PM1 quadtree, you are to use the drawing routines provided.
An appendix to the project description covers their use, and the utilities showquad and printquad, that can
be used to render the output of your programs on a screen or a printer. A dashed (broken) line should be
used to draw quadrant lines, but the lines should be solid (i.e., not dashed). Line names should be output
somewhere near the line.

(3) [10 points] List all the lines in the data base in alphanumerical order. This means that letters come
before digits in the collating sequence. Similarly, shorter identifiers precede longer ones. For example, a
sorted list is A, AB, A3D, 3DA, 5. It is invoked by the command LIST LINES() and yields for each line its
name, and the x and y coordinate values of its endpoints. This will be used to interpret the display since
sometimes it will not be possible to distinguish the boundaries of the lines from the display. You should list
all of the lines in the database whether or not they have been deleted. The output should consist of several
lines and each line only contains one name.

(4) [10 points] Create a line by specifying its two endpoints and assign it a name for subsequent use. It
is invoked by CREATE LINE(N,AX,AY,BX,BY) where N is the name to be associated with the line, AX and AY

are the x and y coordinate values, respectively, of one endpoint while BX and BY are the x and y coordinate
values, respectively, of its other endpoint. Output an appropriate message indicating that the line has been
created as well as its name and endpoints: LINE N IS CREATED. In the following, you may need to output
messages for many operations. Please note that each message should occupy one line and do not output
unnecessary symbols (including new lines and spaces).

(5) [10 points] Determine whether a query line overlaps or intersects any of the existing lines. By overlap
we mean that the line is a subline of an existing line. For example, a line from (3,5) to (8,5) is a subline of
the line from (1,5) to (10,5). This operation is a prerequisite to the successful insertion of a line in the PM1

quadtree. It is invoked by the command LINE SEARCH(N) where N is the name of a line. If the line does
not overlap or intersect an existing line, then LINE SEARCH returns a value of false and outputs a message N

DOES NOT INTERSECT ANY EXISTING LINE. Otherwise, it returns the value true and uses the number of all
overlapping or intersecting lines to output the following message: N INTERSECTS X LINE(S). Note that it
is allowed in the PM1 quadtree that an endpoint of the query line touches the endpoint of an existing line.
As a result, if the line only touches endpoints of the other lines in quadtree, you should return false and
output N DOES NOT INTERSECT ANY EXISTING LINE. You are only to check against the lines that are in the
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quadtree of existing lines and not the lines that existed at some time in the past and have been deleted by
the time this command is executed.

(6) [15 points] Insert a line in the PM1 quadtree. If the line overlaps or intersects an existing line, then do
not make the insertion and report this fact by outputing the number of the overlapping or intersecting lines:
N INTERSECTS X LINE(S). Otherwise, return the name of the line that is being inserted as well as output
a message indicating that this has been done: N IS INSERTED. It is invoked by the command INSERT(N)

where N is the name of a line. It should be clear that the PM1 quadtree is built by a sequence of INSERT

operations. You may assume that the line has been created before insertion.
(7) [20 points] Delete a line or a set of lines from the PM1 quadtree. This operation has two variants,

DELETE LINE and DELETE POINT. The command DELETE LINE(N) deletes the line named N. It returns N if it
was successful in deleting the specified line and outputs a message: N IS DELETED. Otherwise, it outputs the
message N DOES NOT EXIST. On the other hand, the command DELETE POINT(PX,PY) deletes all the lines
which have an endpoint whose x and y coordinate values are given by PX and PY, respectively. DELETE POINT

returns as its value the names of the lines that have been deleted and prints an appropriate message indicating
the number of edges deleted: X LINE(S) DELETED. If the point is not on any line, then an appropriate message
indicating this is output: LINES DO NOT EXIST.

4.4 PART FOUR: ADVANCED OPERATIONS

(8) [10 points] Find the nearest line from a given point. To locate a nearest neighbor we use the command
NEIGHBOR(PX,PY) where PX and PY are the x and y coordinate values, respectively, of the point whose
neighboring line is sought. The command returns as its value the name of the neighboring line if one exists
and outputs it: THE NEAREST NEIGHBOR IS N; otherwise (i.e., the tree is empty) an appropriate message is
output: THE LINE DOES NOT EXIST. Note that if there are multiple nearest lines, you should output the one
with the smallest name in alphanumerical order.

(9) [15 points] Find the k-th nearest line from a given point. To locate the k-th nearest neighbor we use
the command KTH NEIGHBOR(PX,PY) where PX and PY are the x and y coordinate values, respectively, of the
point whose neighboring line is sought. The command returns as its value the name of the k-th neighboring
line if one exists and outputs it: THE KTH NEAREST NEIGHBOR IS N; otherwise (i.e., the tree is empty) an
appropriate message is output: THE LINE DOES NOT EXIST. Note that if there are multiple k-th nearest
lines, you should sort them according to the names in alphanumerical order.

(10) [30 points] Find all lines in a rectangular window. It is invoked by the command WINDOW(AX,AY,BX,BY)

where AX and AY are the x and y coordinate values, respectively, of the left and lower corner of the win-
dow and BX and BY are the x and y coordinate values, respectively, of the right and upper corner. You
may assume AX<BX and AY<BY. Your output is the number of the lines completely inside the window:
X LINE(S) IN THE WINDOW. This is similar to a clipping operation. If the window query is invoked by
WINDOW DISPLAY(AX,AY,BX,BY), you should also output a display of the PM1 quadtree that only shows
segments of the lines that are in the window. Draw the boundary of the window using the percent symbol.
Do not show quadrant lines within the window. The correct display is worth 10 points.

(11) [25 points] Find the polygon that encloses a given point. It is invoked by FIND POLYGON(PX,PY)

where PX and PY are the x and y coordinate values, respectively, of the point whose surrounding polygon is
sought. To perform this operation you must first find the nearest line and then do a walk of edges so that the
point is always to the same side. FIND POLYGON returns a list of the vertices of the polygons if such a polygon
exists. In this case, you should output the area of the polygon: POLYGON FOUND: S/2 PIXELS, where S is
two times the area of the polygon, which is an integer. For example, if the result polygon is the rectangle
whose two corners are (0,0) and (10,10) you should output POLYGON FOUND: 200/2 PIXELS. Otherwise, an
appropriate error message is output indicating the problem: NO ENCLOSING POLYGON. Some examples of the
case where a polygon fails to exist include touching the border of the space in which the PM1 quadtree is
embedded. Another problematic example arises when there are several polygons in the world which are not
connected (i.e., they do not have any edge in common) and the point is in the area that is not in any of the
polygons. How do you detect such a situation? Holes may also pose a problem (e.g., Figure 10). In addition,
you must be able to handle the situation that a vertex has only one line emanating from it in which case
you may stop the search and output an appropriate message, or ignore the line (or lines) and continue the
walk. Your grade for the task will depend, in part, on the efficiency and completeness of your solution.
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4.5 OPTIONAL OPERATIONS

(12) [20 points] Generalize the WINDOW command to work for a window in the form of an arbitrary polygon. For
the simplicity of the implementation, the lines do not need to be completely inside the window. Instead, you
should count all lines intersecting the window (including those that touch the boundary and are completely
inside). It is invoked by the command POLYGONAL WINDOW(PXS,PYS), followed by an arbitrary number of
commands VERTEX WINDOW(PX,PY), and terminated by the command END WINDOW(). PXS and PYS are the
x and y coordinate values, respectively, of the first vertex in the window polygon. The VERTEX WINDOW

command is used to specify the remaining vertices in the polygonal window in a clockwise order with
PX and PY serving as their x and y coordinate values, respectively. END WINDOW indicates the end of the
specification process of the window and that the last vertex is to be connected to the first vertex. Your
output is the number of the lines: X LINE(S) IN THE POLYGONAL WINDOW. If the operation is invoked by
POLYGONAL WINDOW DISPLAY(PXS,PYS) (the remaining commands indicating the vertices of the window are
the same), you should also output a display of the PM1 quadtree that only shows segments of the lines that
intersects the window. Draw the boundary of the window using the percent symbol. Do not show display
quadrant lines within the window. The correct display is worth 10 points.

(13) [10 points] Perform connected component labeling on the PM1 quadtree. This means that all WHITE
(i.e., empty) quadtree blocks within the same polygon are assigned the same label. This is accomplished
by the command LABEL(). The result of the operation is a display of the PM1 quadtree where all blocks
in each polygon are shown with the same label. If a block is of size 1 × 1 or q × 2, then do not display
its boundaries (i.e., omit the quadrant lines) and just output the label. Blocks that fall in more than one
polygon are displayed without a label. Use one character labels formed from letters, digits, and other symbols
as necessary.

5 DISCUSSION

Absent from the set of operations that you have been requested to implement (with the exception of operation
11) is any notion of maintaining region (or polygon) identification with the q-edges. This is not an oversight
for the question of how to efficiently maintain the labels of the q-edges as lines are inserted and deleted is
a non-trivial matter. These actions cause a split of a region into two parts or the merger of two regions.
Updating the region information is complex. In the rest of this section we detail an approach described by
Samet and Webber [10] to deal with this problem. It is obviously more complex than you wish to implement.
However, it does provide a good case study in the judicious selection and use of data structures to overcome
algorithmic complexity issues. Of course, the ensuing discussion is predicated on the premise that the PM1

quadtree is a reasonable approach to storing collections of line segments which is arguable - an issue that is
best left to another forum.

For example, Figure 10 contains a pentagonal region ABCDE with many holes. All the q-edges forming
the ABCDE border and those forming the outer border of each of the holes must be labeled with the name
of the pentagonal region. Now consider what happens when edge BE is inserted. The outer border of the
pentagonal region has been split in two and the new edge has been inserted forming two new regions - a
triangular region and a quadrilateral region. Also the holes of the original pentagonal region must have their
labels changed to indicate whether they are now in the triangular region or in the quadrilateral region. If
the region labels were stored directly on each q-edge, then the updating of region labels would require that
every q-edge be visited. If no additional data structure were used to organize the labels, then visiting each
q-edge would be analogous to doing a connected component analysis of the portion of the map bounded by
the pentagonal region. This analysis can be greatly simplified if all the q-edges in a particular region are
kept in a linked list, but it will still involve an amount of work proportional to the number of q-edges in the
outer border of the pentagonal region and in the outer border of all the holes inside the pentagonal region.
In the following, we propose to organize the q-edges within a region in a more efficient manner than a linked
list. Note that the above comments about the insertion of the edge BE apply equally to the problem of
deleting the edge BE.

The q-edges that border a region can be partitioned into a collection of disconnected chains of q-edges.
Elements of this collection correspond to walks along the outer border of the region, to walks along the outer
borders of any holes in the region, and miscellaneous q-edges that have the same region on both their left
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Figure 10: Example polygonal map with many holes.

and right sides (and hence are not properly borders of any region). The q-edges of each chain are grouped
into a 2-3 tree [1] (termed a chain 2-3 tree) and we only store the label information (i.e., an identifier for
the chain) in the root of the tree. In fact, each q-edge is linked to the leaves of at most two of these 2-3
trees (one link for the region on each side of the q-edge) and the region information is found by moving up
the tree using father links. Moreover, the chains of each region are also grouped into a 2-3 tree (termed a
region 2-3 tree) and again we only store the label information in the root of the tree (this time the label
information is the name of the region). The 2-3 tree is chosen because of its algorithmic simplicity (it is a
degenerate case of the much studied B-tree [2]). In particular, the 2-3 tree has the property that insertion,
deletion, and splitting and concatenation of two 2-3 trees can be performed in O(log2 n) time for trees of size
n. In addition, two 2-3 trees of size t1 and t2 respectively can be merged into a new 2-3 tree in O(t1 + t2)
time. However, other balanced tree techniques could have also been used.

In order to be able to make use of the 2-3 trees we must be able to define an ordering for q-edges and
chains. The q-edges in a given chain can be ordered according to their appearance during a walk along
the chain starting at the leftmost of the uppermost vertices incident to the chain. In case of a tie (e.g., a
closed chain in which case there are two q-edges meeting this criterion), we choose the q-edge whose other
endpoint is uppermost leftmost. We also have to order the collection of chains corresponding to each region
which we do by using their “extreme” q-edge. By extreme we mean that for each chain we choose the q-edge
having the uppermost leftmost endpoint. Again, in case of a tie (e.g., extreme q-edges that share the same
endpoint), we apply the same rule to the second endpoint. This extreme q-edge will provide a unique label
for the entire region (with respect to a particular map).

If deletion or insertion of a q-edge does not change the number of regions in the map, then the operation
can be performed in O(log2 q) time where q is the number of q-edges (i.e., leaves) in the largest chain 2-3
tree associated with a given region. If deletion of a q-edge merges two regions, then the region 2-3 trees that
order the collection of chains for each region will need to be merged. If the number of leaves (i.e., chains) in
the region 2-3 trees representing these two regions is t1 and t2, respectively, then the cost of this operation
will be O(t1 + t2 + log2 q) time. This is accomplished by a procedure that merges the two collections of
disconnected chains in O(t1 + t2) time and creates the border of the new region from the borders of the two
merged regions in O(log2 q) time. Note that for cartographic data the individual chains are typically long
(i.e., q can become large), but the number of chains in each region’s collection is usually small for a given
region (i.e., t1 + t2 is usually small). Indeed, if there are no chains that have the same region on both sides,
then the average value of t1 (and also t2) could not be larger than 1 (corresponding to the region’s outer
border) plus the average number of holes. But since each hole is itself a region, the average number of holes
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cannot exceed 1. Therefore the average value of t1 (and of t2) cannot exceed 2.
Similarly, when q-edge insertion causes splitting of a region with a region 2-3 tree of t chains, the cost

will be O(t+ log2 q) time. This is accomplished by a procedure that separates the collection of disconnected
chains of q-edges that bounded the old region (i.e., its region 2-3 tree) into a collection for each of the
new regions (i.e., new region 2-3 trees) in O(t) time and splits the outer border of the old region into the
two outer borders of the new regions in O(log2 q) time. Note that the new region might be created by the
inserted q-edge completing the border of a hole instead of connecting the outer border in 2 places. The cost
of determining the region to which a q-edge belongs is O(log2 q) time.
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SAMPLE INPUT

INIT QUADTREE(4)

CREATE LINE(AB,8,1,10,2)

CREATE LINE(BC,10,2,5,5)

CREATE LINE(CA,5,5,8,1)

CREATE LINE(CD,5,5,9,7)

CREATE LINE(DE,9,7,12,10)

CREATE LINE(EC,12,10,5,5)

CREATE LINE(BD,10,2,9,7)

CREATE LINE(BF,10,2,11,5)

CREATE LINE(FD,11,5,9,7)

CREATE LINE(GE,12,6,12,10)

CREATE LINE(DG,9,7,12,6)

CREATE LINE(GF,12,6,11,5)

CREATE LINE(BG,10,2,12,6)

CREATE LINE(HE,13,9,12,10)

CREATE LINE(GH,12,6,13,9)

CREATE LINE(1,13,5,15,13)

LINE SEARCH(1)

INSERT(GE)

INSERT(BG)

INSERT(HE)

DELETE(BG)

INSERT(GF)

DELETE(HE)

DELETE(GF)

CREATE LINE(2,1,4,10,7)

LINE SEARCH(2)

CREATE LINE(3,7,2,15,6)

LINE SEARCH(3)

INSERT(HE)

CREATE LINE(4,11,5,5,14)

LINE SEARCH(4)

DELETE(GE)

INSERT(CA)

CREATE LINE(5,14,14,6,5)

LINE SEARCH(5)

DELETE POINT(9,7)

CREATE LINE(6,4,5,5,0)

LINE SEARCH(6)

DELETE POINT(12,6)

CREATE LINE(7,9,10,5,0)

LINE SEARCH(7)

INSERT(DE)

INSERT(GF)

CREATE LINE(8,12,15,6,2)

LINE SEARCH(8)

INSERT(GE)

DELETE(GF)

DELETE(DE)

DELETE POINT(8,1)

CREATE LINE(9,6,7,2,14)

LINE SEARCH(9)
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INSERT(BG)

CREATE LINE(10,8,8,13,1)

LINE SEARCH(10)

CREATE LINE(11,15,11,10,7)

LINE SEARCH(11)

INSERT(DE)

INSERT(AB)

CREATE LINE(12,11,4,13,3)

LINE SEARCH(12)

DELETE(GE)

SAMPLE OUTPUT

LINE AB IS CREATED

LINE BC IS CREATED

LINE CA IS CREATED

LINE CD IS CREATED

LINE DE IS CREATED

LINE EC IS CREATED

LINE BD IS CREATED

LINE BF IS CREATED

LINE FD IS CREATED

LINE GE IS CREATED

LINE DG IS CREATED

LINE GF IS CREATED

LINE BG IS CREATED

LINE HE IS CREATED

LINE GH IS CREATED

1 IS CREATED

1 DOES NOT INTERSECT ANY EXISTING LINE

GE IS INSERTED

BG IS INSERTED

HE IS INSERTED

BG IS DELETED

GF IS INSERTED

HE IS DELETED

GF IS DELETED

2 IS CREATED

2 DOES NOT INTERSECT ANY EXISTING LINE

3 IS CREATED

3 DOES NOT INTERSECT ANY EXISTING LINE

HE IS INSERTED

4 IS CREATED

4 DOES NOT INTERSECT ANY EXISTING LINE

GE IS DELETED

CA IS INSERTED

5 IS CREATED

5 DOES NOT INTERSECT ANY EXISTING LINE

0 LINE(S) DELETED

6 IS CREATED

6 DOES NOT INTERSECT ANY EXISTING LINE

0 LINE(S) DELETED

7 IS CREATED
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7 INTERSECTS 1 LINE(S)

DE IS INSERTED

GF IS INSERTED

8 IS CREATED

8 INTERSECTS 1 LINE(S)

GE IS INSERTED

GF IS DELETED

DE IS DELETED

1 LINE(S) DELETED

9 IS CREATED

9 DOES NOT INTERSECT ANY EXISTING LINE

BG IS INSERTED

10 IS CREATED

10 INTERSECTS 1 LINE(S)

11 IS CREATED

11 INTERSECTS 2 LINE(S)

DE IS INSERTED

AB IS INSERTED

12 IS CREATED

12 INTERSECTS 1 LINE(S)

GE IS DELETED
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