
tr0

Copyright © 1997 Hanan Samet

These notes may not be reproduced by any means (mechanical or elec-
tronic or any other) without the express written permission of Hanan Samet

TREES

Hanan Samet

Computer Science Department and
Center for Automation Research and

Institute for Advanced Computer Studies
University of Maryland

College Park, Maryland 20742
e-mail: hjs@umiacs.umd.edu

tr1

TREE DEFINITION

• TREE ≡ a branching structure between nodes

• A finite set T of one or more nodes such that:

 1. one element of the set is distinguished, ROOT(T)

 2. the remaining nodes of T are partitioned into m ≥ 0
 disjoint sets T1, T2, … T and each of these sets is
 in turn a tree.
 • trees T1, T2, … T are the subtrees of the root

• Recursive definition – easy to prove theorems about
 properties of trees.

 Ex: prove true for 1 node
 assume true for n nodes
 prove true for n+1 nodes

• ORDERED TREE ≡ if the relative order of the subtrees
 T1, T2, … T is important

• ORIENTED TREE ≡ order is not important

• Computer representation ⇒ ordered!

BC

AA

B C

≠ ordered

A

B C

D E

A

BC

DE

?
=

m

m

m

Copyright © 1998 by Hanan Samet

tr2

TERMINOLOGY

• Counterintuitive!

• DEGREE ≡ number of subtrees of a node
• Terminal node ≡ leaf ≡ degree 0
• BRANCH NODE ≡ non-terminal node

• Root is the father of the roots of its subtrees
• Roots of subtrees of a node are brothers
• Roots of subtrees of a node are sons of the node
• The root of the tree has no father!
• A is an ancestor of C, E, G, …
• G is a descendant of A

level(X) ≡ if father(X)= Ω then 0

 else 1+level(father(X));

Ex: level(G) = 1+level(F)

 1+level(C)

 1+level(A)

 0

1
b

A

B C

D E F

G

Copyright © 1998 by Hanan Samet

tr2

TERMINOLOGY

• Counterintuitive!

• DEGREE ≡ number of subtrees of a node
• Terminal node ≡ leaf ≡ degree 0
• BRANCH NODE ≡ non-terminal node

• Root is the father of the roots of its subtrees
• Roots of subtrees of a node are brothers
• Roots of subtrees of a node are sons of the node
• The root of the tree has no father!
• A is an ancestor of C, E, G, …
• G is a descendant of A

level(X) ≡ if father(X)= Ω then 0

 else 1+level(father(X));

Ex: level(G) = 1+level(F)

 1+level(C)

 1+level(A)

 0

1
b

A

B C

D E F

G

Copyright © 1998 by Hanan Samet

tr22
r

level 0

level 1

level 2

level 3

Copyright © 1998 by Hanan Samet

tr381
b

• BINARY TREE ≡ a finite set of nodes which either is empty or
 a root and two disjoint binary trees called the
 left and right subtrees of the root

• Is a binary tree a special case of a tree?

FORESTS AND BINARY TREES

• FOREST ≡ a set (usually ordered) of 0 or more disjoint trees,
 or equivalently:
 the nodes of a tree excluding the root

C

E F

B

D
has the forest

A

B C

D E F

Copyright © 1998 by Hanan Samet

tr381
b

• BINARY TREE ≡ a finite set of nodes which either is empty or
 a root and two disjoint binary trees called the
 left and right subtrees of the root

• Is a binary tree a special case of a tree?

FORESTS AND BINARY TREES

• FOREST ≡ a set (usually ordered) of 0 or more disjoint trees,
 or equivalently:
 the nodes of a tree excluding the root

C

E F

B

D
has the forest

A

B C

D E F

Copyright © 1998 by Hanan Samet

tr32
r

NO! An entirely different concept

A

BB

A

1 2and are different binary trees

Copyright © 1998 by Hanan Samet

tr381
b

• BINARY TREE ≡ a finite set of nodes which either is empty or
 a root and two disjoint binary trees called the
 left and right subtrees of the root

• Is a binary tree a special case of a tree?

FORESTS AND BINARY TREES

• FOREST ≡ a set (usually ordered) of 0 or more disjoint trees,
 or equivalently:
 the nodes of a tree excluding the root

C

E F

B

D
has the forest

A

B C

D E F

Copyright © 1998 by Hanan Samet

tr32
r

NO! An entirely different concept

A

BB

A

1 2and are different binary trees

Copyright © 1998 by Hanan Samet

tr33
z

1 has an empty right subtree
2 has an empty left subtree
But as ‘trees’ 1 and 2 are identical!

Copyright © 1998 by Hanan Samet

OTHER REPRESENTATIONS OF TREES

• Nested sets (also known as ‘bubble diagrams’)

• Nested parentheses

 Tree (root subtree1 subtree2 ... subtreen)
 (A (B (C) (D)) (G (E (F))))

 Binary tree (root left right)
 (A (B (C () ()) (D () ()))

 (G (E (F () ()) ()) ()))

• Indentation
 A

 B

 C

 D

 G

 E

 F

• Dewey decimal notation: 2.1 2.2.2 2.3.4.5

B

DC
F

E
G

A

tr4

A

B

C D E

F

G

Copyright © 1998 by Hanan Samet

tr5

APPLICATIONS

• Segmentation of large rectangular arrays – A[n,m]

• Algebraic formulas

 1. no need for parentheses
 • but A–B+C = (A–B)+C

 ≠ A–(B+C)

 2. code generation

 LW 1,A
 LW 2,B
 DW 2,C
 MW 2,D
 AW 2,1

A

A[1] A[2] … A[n]

A[1,1] A[1,2]… A[1,m] A[n,1] A[n,2]… A[n,m]

each row is a segment
(Burroughs computers)

operator

operand operand

A+((B⁄C) ×D)

+

A ×

⁄

B C

D

Copyright © 1998 by Hanan Samet

LISTs (with a capital L!)

• LIST ≡ a finite sequence of 0 or more atoms or LISTS

 L=(A,(B,A,B),(),C,(((2))))

 () ≡ empty list

• Index notation:

 L[2]=(B,A,B)
 L[2,1]=B
 L[5,2]
 L[5,1,1]

• Differences between LISTS and trees:

 1. no data appears in the nodes representing LISTS - i.e., ✲

 2. LISTS may be recursive M=(M)

 3. LISTS may overlap (i.e., need not be disjoint)

 • equivalently, subtrees may be shared

 N=(M,M,C,N)

tr6

B

2

✲

✲ ✲ ✲A

A B

C

✲

✲

✲[M] ← Label

[M]

✲[N]

✲[M] [M] [N]C

[M]

Copyright © 1998 by Hanan Samet

tr7

TRAVERSING BINARY TREES

• Representation

ΩΩΩ

Ω

Ω

Ω

Ω

D

A

B C ABD and ACD

• Applications:
 1. code generation in compilers
 2. game trees in artificial intelligence
 3. detect if a structure is really a tree
 • TREE ≡ one path from each node to another node
 (unlike graph)
 • no cycles

 RLINK INFO LLINK

Copyright © 1998 by Hanan Samet

tr8

TRAVERSAL ORDERS

1. Preorder ≡ root, left subtree, right subtree
 • depth-first search
2. Inorder ≡ left subtree, root, right subtree
 • binary search tree
3. Postorder ≡ left subtree, right subtree, root
 • code generation

• Binary search tree: left < root < right

 inorder yields 10 15 20 30 45

• Ex:
 preorder =

 inorder =

 postorder =

• Inorder traversal requires a stack to go back up the tree:

 D

 B

 A

81
b

10

15 45

20

30

C

A

B

E

G

D

KI JH

F

Copyright © 1998 by Hanan Samet

tr8

TRAVERSAL ORDERS

1. Preorder ≡ root, left subtree, right subtree
 • depth-first search
2. Inorder ≡ left subtree, root, right subtree
 • binary search tree
3. Postorder ≡ left subtree, right subtree, root
 • code generation

• Binary search tree: left < root < right

 inorder yields 10 15 20 30 45

• Ex:
 preorder =

 inorder =

 postorder =

• Inorder traversal requires a stack to go back up the tree:

 D

 B

 A

81
b

10

15 45

20

30

C

A

B

E

G

D

KI JH

F

Copyright © 1998 by Hanan Samet

tr82
r

A B D I K C E G F H J

Copyright © 1998 by Hanan Samet

tr8

TRAVERSAL ORDERS

1. Preorder ≡ root, left subtree, right subtree
 • depth-first search
2. Inorder ≡ left subtree, root, right subtree
 • binary search tree
3. Postorder ≡ left subtree, right subtree, root
 • code generation

• Binary search tree: left < root < right

 inorder yields 10 15 20 30 45

• Ex:
 preorder =

 inorder =

 postorder =

• Inorder traversal requires a stack to go back up the tree:

 D

 B

 A

81
b

10

15 45

20

30

C

A

B

E

G

D

KI JH

F

Copyright © 1998 by Hanan Samet

tr82
r

A B D I K C E G F H J

Copyright © 1998 by Hanan Samet

tr83
z

I D K B A E G C H F J

Copyright © 1998 by Hanan Samet

tr8

TRAVERSAL ORDERS

1. Preorder ≡ root, left subtree, right subtree
 • depth-first search
2. Inorder ≡ left subtree, root, right subtree
 • binary search tree
3. Postorder ≡ left subtree, right subtree, root
 • code generation

• Binary search tree: left < root < right

 inorder yields 10 15 20 30 45

• Ex:
 preorder =

 inorder =

 postorder =

• Inorder traversal requires a stack to go back up the tree:

 D

 B

 A

81
b

10

15 45

20

30

C

A

B

E

G

D

KI JH

F

Copyright © 1998 by Hanan Samet

tr82
r

A B D I K C E G F H J

Copyright © 1998 by Hanan Samet

tr83
z

I D K B A E G C H F J

Copyright © 1998 by Hanan Samet

tr84
g

I K D B G E H J F C A

Copyright © 1998 by Hanan Samet

tr9

INORDER TRAVERSAL ALGORITHM

procedure inorder(tree pointer T);
begin
 stack A;
 tree pointer P;
 A ←Ω;
 P ←T;
 while not(P= Ω and A= Ω) do
 begin
 if P= Ω then
 begin
 P ⇐ A; /* Pop the stack */
 visit(ROOT(P));
 P ←RLINK(P);
 end
 else
 begin
 A ⇐ P; /* Push on the stack */
 P ←LLINK (P);
 end;
 end;
end;

Using recursion:

procedure inorder(tree pointer T);
begin
 if T= Ω then return
 else
 begin
 inorder(LLINK (T));
 visit(ROOT(T));
 inorder(RLINK(T));
 end;
end;

Copyright © 1998 by Hanan Samet

tr1081
b

THREADED BINARY TREES

• Binary tree representation has too many Ω links
• Use 1-bit tag fields to indicate presence of a link
• If Ω link, then use field to store links to other parts
 of the structure to aid the traversal of the tree

Unthreaded: Threaded:
LLINK(p) = Ω LTAG(p) = 0,
 LLINK(p) = $p = inorder predecessor of p
LLINK(p) = q ≠ Ω LTAG(p) = 1,
 LLINK(p) = q
RLINK(p) = Ω RTAG(p) = 0,
 RLINK(p) = p$ = inorder successor of p
RLINK(p) = q ≠ Ω RTAG(p) = 1,
 RLINK(p) = q

Ex: HEAD

• If address of ROOT(T) < address of left and right sons,
 then don't need the TAG fields
• Threads will point to lower addresses!

 LLINK RLINK LTAG RTAG INFO

A

B C

D E F

G H J

Copyright © 1998 by Hanan Samet

tr1081
b

THREADED BINARY TREES

• Binary tree representation has too many Ω links
• Use 1-bit tag fields to indicate presence of a link
• If Ω link, then use field to store links to other parts
 of the structure to aid the traversal of the tree

Unthreaded: Threaded:
LLINK(p) = Ω LTAG(p) = 0,
 LLINK(p) = $p = inorder predecessor of p
LLINK(p) = q ≠ Ω LTAG(p) = 1,
 LLINK(p) = q
RLINK(p) = Ω RTAG(p) = 0,
 RLINK(p) = p$ = inorder successor of p
RLINK(p) = q ≠ Ω RTAG(p) = 1,
 RLINK(p) = q

Ex: HEAD

• If address of ROOT(T) < address of left and right sons,
 then don't need the TAG fields
• Threads will point to lower addresses!

 LLINK RLINK LTAG RTAG INFO

A

B C

D E F

G H J

Copyright © 1998 by Hanan Samet

tr102
r

Copyright © 1998 by Hanan Samet

tr1081
b

THREADED BINARY TREES

• Binary tree representation has too many Ω links
• Use 1-bit tag fields to indicate presence of a link
• If Ω link, then use field to store links to other parts
 of the structure to aid the traversal of the tree

Unthreaded: Threaded:
LLINK(p) = Ω LTAG(p) = 0,
 LLINK(p) = $p = inorder predecessor of p
LLINK(p) = q ≠ Ω LTAG(p) = 1,
 LLINK(p) = q
RLINK(p) = Ω RTAG(p) = 0,
 RLINK(p) = p$ = inorder successor of p
RLINK(p) = q ≠ Ω RTAG(p) = 1,
 RLINK(p) = q

Ex: HEAD

• If address of ROOT(T) < address of left and right sons,
 then don't need the TAG fields
• Threads will point to lower addresses!

 LLINK RLINK LTAG RTAG INFO

A

B C

D E F

G H J

Copyright © 1998 by Hanan Samet

tr102
r

Copyright © 1998 by Hanan Samet

tr103
z

Copyright © 1998 by Hanan Samet

tr1181
b

OPERATIONS ON THREADED BINARY TREES

• Find the inorder successor of node P (P$)

 1. Q ←RLINK(P); /* right thread points to P$ */
 2. if RTAG(P)=1 then
 begin /* not a thread */
 while LTAG(Q)=1 do Q ←LLINK (Q);
 end;

• Insert node Q as the right subtree of node P

 1. RLINK(Q) ←RLINK(P); RTAG(Q) ←RTAG(P);

 RLINK(P) ←Q; RTAG(P) ←1;

 LLINK (Q) ←P; LTAG(Q) ←0;

 2. if RTAG(Q)=1 then LLINK (Q$) ←Q;

C

P

A

P

A

A

B

C

D

Copyright © 1998 by Hanan Samet

tr1181
b

OPERATIONS ON THREADED BINARY TREES

• Find the inorder successor of node P (P$)

 1. Q ←RLINK(P); /* right thread points to P$ */
 2. if RTAG(P)=1 then
 begin /* not a thread */
 while LTAG(Q)=1 do Q ←LLINK (Q);
 end;

• Insert node Q as the right subtree of node P

 1. RLINK(Q) ←RLINK(P); RTAG(Q) ←RTAG(P);

 RLINK(P) ←Q; RTAG(P) ←1;

 LLINK (Q) ←P; LTAG(Q) ←0;

 2. if RTAG(Q)=1 then LLINK (Q$) ←Q;

C

P

A

P

A

A

B

C

D

Copyright © 1998 by Hanan Samet

tr112
r

Copyright © 1998 by Hanan Samet

tr1181
b

OPERATIONS ON THREADED BINARY TREES

• Find the inorder successor of node P (P$)

 1. Q ←RLINK(P); /* right thread points to P$ */
 2. if RTAG(P)=1 then
 begin /* not a thread */
 while LTAG(Q)=1 do Q ←LLINK (Q);
 end;

• Insert node Q as the right subtree of node P

 1. RLINK(Q) ←RLINK(P); RTAG(Q) ←RTAG(P);

 RLINK(P) ←Q; RTAG(P) ←1;

 LLINK (Q) ←P; LTAG(Q) ←0;

 2. if RTAG(Q)=1 then LLINK (Q$) ←Q;

C

P

A

P

A

A

B

C

D

Copyright © 1998 by Hanan Samet

tr112
r

Copyright © 1998 by Hanan Samet

tr113
z

Q

Q

Copyright © 1998 by Hanan Samet

tr1181
b

OPERATIONS ON THREADED BINARY TREES

• Find the inorder successor of node P (P$)

 1. Q ←RLINK(P); /* right thread points to P$ */
 2. if RTAG(P)=1 then
 begin /* not a thread */
 while LTAG(Q)=1 do Q ←LLINK (Q);
 end;

• Insert node Q as the right subtree of node P

 1. RLINK(Q) ←RLINK(P); RTAG(Q) ←RTAG(P);

 RLINK(P) ←Q; RTAG(P) ←1;

 LLINK (Q) ←P; LTAG(Q) ←0;

 2. if RTAG(Q)=1 then LLINK (Q$) ←Q;

C

P

A

P

A

A

B

C

D

Copyright © 1998 by Hanan Samet

tr112
r

Copyright © 1998 by Hanan Samet

tr113
z

Q

Q

Copyright © 1998 by Hanan Samet

tr114
g

Copyright © 1998 by Hanan Samet

tr1181
b

OPERATIONS ON THREADED BINARY TREES

• Find the inorder successor of node P (P$)

 1. Q ←RLINK(P); /* right thread points to P$ */
 2. if RTAG(P)=1 then
 begin /* not a thread */
 while LTAG(Q)=1 do Q ←LLINK (Q);
 end;

• Insert node Q as the right subtree of node P

 1. RLINK(Q) ←RLINK(P); RTAG(Q) ←RTAG(P);

 RLINK(P) ←Q; RTAG(P) ←1;

 LLINK (Q) ←P; LTAG(Q) ←0;

 2. if RTAG(Q)=1 then LLINK (Q$) ←Q;

C

P

A

P

A

A

B

C

D

Copyright © 1998 by Hanan Samet

tr112
r

Copyright © 1998 by Hanan Samet

tr113
z

Q

Q

Copyright © 1998 by Hanan Samet

tr114
g

Copyright © 1998 by Hanan Samet

tr115
v

Copyright © 1998 by Hanan Samet

tr1181
b

OPERATIONS ON THREADED BINARY TREES

• Find the inorder successor of node P (P$)

 1. Q ←RLINK(P); /* right thread points to P$ */
 2. if RTAG(P)=1 then
 begin /* not a thread */
 while LTAG(Q)=1 do Q ←LLINK (Q);
 end;

• Insert node Q as the right subtree of node P

 1. RLINK(Q) ←RLINK(P); RTAG(Q) ←RTAG(P);

 RLINK(P) ←Q; RTAG(P) ←1;

 LLINK (Q) ←P; LTAG(Q) ←0;

 2. if RTAG(Q)=1 then LLINK (Q$) ←Q;

C

P

A

P

A

A

B

C

D

Copyright © 1998 by Hanan Samet

tr112
r

Copyright © 1998 by Hanan Samet

tr113
z

Q

Q

Copyright © 1998 by Hanan Samet

tr114
g

Copyright © 1998 by Hanan Samet

tr115
v

Copyright © 1998 by Hanan Samet

tr116
r

Copyright © 1998 by Hanan Samet

tr12
SUMMARY OF THREADING

1. Advantages
 • no need for a stack for traversal
 • will not run out of memory during inorder traversal
 • can find inorder successor of any node without
 having to traverse the entire tree

2. Disadvantages
 • insertion and deletion of nodes is slower
 • can’t share common subtrees in the
 threaded representation

 Ex: two choices for the inorder successor of F

3. Right-threaded trees
 • inorder algorithms make little use of left threads
 • ‘LTAG(P)=1’ test can be replaced by ‘LLINK(P)=Ω’ test

A

B C

D

E F

G

A

B C

D

E F

GD

E F

?

Copyright © 1998 by Hanan Samet

tr1381
b

PRINCIPLES OF RECURSION

• Two binary trees T1 and T2 are said to be similar if they
 have the same shape or structure
• Formally:
 1. they are both empty or
 2. they are both non-empty and their left
 and right subtrees respectively are similar

 similar(T 1,T 2) =
 if empty(T 1) and empty(T 2) then T

 else similar(left(T 1),left(T 2)) and
 similar(right(T 1),right(T 2));

• Will similar work?

?

A

B C

D A

BC

D

Copyright © 1998 by Hanan Samet

tr1381
b

PRINCIPLES OF RECURSION

• Two binary trees T1 and T2 are said to be similar if they
 have the same shape or structure
• Formally:
 1. they are both empty or
 2. they are both non-empty and their left
 and right subtrees respectively are similar

 similar(T 1,T 2) =
 if empty(T 1) and empty(T 2) then T

 else similar(left(T 1),left(T 2)) and
 similar(right(T 1),right(T 2));

• Will similar work?

?

A

B C

D A

BC

D

Copyright © 1998 by Hanan Samet

tr132
r

 else if empty(T 1) or empty(T 2) then F

• No! base case does not handle case when one of the
 trees is empty and the other one is not

Copyright © 1998 by Hanan Samet

tr1381
b

PRINCIPLES OF RECURSION

• Two binary trees T1 and T2 are said to be similar if they
 have the same shape or structure
• Formally:
 1. they are both empty or
 2. they are both non-empty and their left
 and right subtrees respectively are similar

 similar(T 1,T 2) =
 if empty(T 1) and empty(T 2) then T

 else similar(left(T 1),left(T 2)) and
 similar(right(T 1),right(T 2));

• Will similar work?

?

A

B C

D A

BC

D

Copyright © 1998 by Hanan Samet

tr132
r

 else if empty(T 1) or empty(T 2) then F

• No! base case does not handle case when one of the
 trees is empty and the other one is not

Copyright © 1998 by Hanan Samet

tr133
z

• Simplifying:
 A and B = if A then B A or B =
 else F

Copyright © 1998 by Hanan Samet

tr1381
b

PRINCIPLES OF RECURSION

• Two binary trees T1 and T2 are said to be similar if they
 have the same shape or structure
• Formally:
 1. they are both empty or
 2. they are both non-empty and their left
 and right subtrees respectively are similar

 similar(T 1,T 2) =
 if empty(T 1) and empty(T 2) then T

 else similar(left(T 1),left(T 2)) and
 similar(right(T 1),right(T 2));

• Will similar work?

?

A

B C

D A

BC

D

Copyright © 1998 by Hanan Samet

tr132
r

 else if empty(T 1) or empty(T 2) then F

• No! base case does not handle case when one of the
 trees is empty and the other one is not

Copyright © 1998 by Hanan Samet

tr133
z

• Simplifying:
 A and B = if A then B A or B =
 else F

Copyright © 1998 by Hanan Samet

tr134
g

 if A then T
 else B

 similar(T 1,T 2) =
 if empty(T 1) then
 if empty(T 2) then T
 else F
 else if empty(T 2) then F
 else if similar(left(T 1),left(T 2)) then
 similar(right(T 1),right(T 2))
 else F ;

Copyright © 1998 by Hanan Samet

tr1381
b

PRINCIPLES OF RECURSION

• Two binary trees T1 and T2 are said to be similar if they
 have the same shape or structure
• Formally:
 1. they are both empty or
 2. they are both non-empty and their left
 and right subtrees respectively are similar

 similar(T 1,T 2) =
 if empty(T 1) and empty(T 2) then T

 else similar(left(T 1),left(T 2)) and
 similar(right(T 1),right(T 2));

• Will similar work?

?

A

B C

D A

BC

D

Copyright © 1998 by Hanan Samet

tr132
r

 else if empty(T 1) or empty(T 2) then F

• No! base case does not handle case when one of the
 trees is empty and the other one is not

Copyright © 1998 by Hanan Samet

tr133
z

• Simplifying:
 A and B = if A then B A or B =
 else F

Copyright © 1998 by Hanan Samet

tr134
g

 if A then T
 else B

 similar(T 1,T 2) =
 if empty(T 1) then
 if empty(T 2) then T
 else F
 else if empty(T 2) then F
 else if similar(left(T 1),left(T 2)) then
 similar(right(T 1),right(T 2))
 else F ;

Copyright © 1998 by Hanan Samet

tr135
v

empty(T 2)

and

Copyright © 1998 by Hanan Samet

tr1481
b

EQUIVALENCE OF BINARY TREES

• Two binary trees T1 and T2 are said to be equivalent
 if they are similar and corresponding nodes contain
 the same information

equivalent(T1,T2) =
 if empty(T1) and empty(T2) then T
 else if empty(T1) or empty(T2) then F
 else root(T1)=root(T2) and
 equivalent(left(T1),left(T2)) and
 equivalent(right(T1),right(T2));

D

B C

A

D

B C

A

?
≡

Copyright © 1998 by Hanan Samet

tr1481
b

EQUIVALENCE OF BINARY TREES

• Two binary trees T1 and T2 are said to be equivalent
 if they are similar and corresponding nodes contain
 the same information

equivalent(T1,T2) =
 if empty(T1) and empty(T2) then T
 else if empty(T1) or empty(T2) then F
 else root(T1)=root(T2) and
 equivalent(left(T1),left(T2)) and
 equivalent(right(T1),right(T2));

D

B C

A

D

B C

A

?
≡

Copyright © 1998 by Hanan Samet

tr142
r

NO! we are dealing with binary trees and the left
 subtree of C is not the same in the two cases

Copyright © 1998 by Hanan Samet

tr15

RECURSION SUMMARY

• Avoids having to use an explicit stack in the algorithm
• Problem formulation is analogous to induction
• Base case, inductive case

• Ex: Factorial
 n = n • (n – 1) !

 fact(n) = if n=0 then 1
 else n*fact(n-1);

 The result is obtained by peeling one’s way back
 along the stack

 fact(3) = 3*fact(2)
 2*fact(1)
 1*fact(0)
 1
 = 6

 Using an accumulator variable and a call fact2(n,1) :

 fact2(n,total) = if n=0 then total
 else fact2(n-1,n*total);

 Solution is iterative

• Recursion implemented on computer using stack instructions.
• Dec-system 10: PUSH, POP, PUSHJ, POPJ

• Stack pointer format: (count, address)
• Can simulate stack if no stack instructions

!

Copyright © 1998 by Hanan Samet

tr16

COMPLETE BINARY TREES

When a binary tree is reasonably complete (most Ω links
are at the highest level), use a sequential storage allocation
scheme so that links become unnecessary

• If n is the highest level at which a node is found,
 then at most 2n+1 – 1 words are needed

• Storage allocation method:
 1. root has address 1
 2. left son of x has address 2 ∗ address(x)
 3. right son of x has address 2 ∗ address(x) + 1

• When should a complete binary tree be used?
 n = highest level of the tree at which a node is found
 x = # of nodes in tree
 3 words per node (left link, right link, info)
 use a complete binary tree when x > (2n+1 – 1) / 3

1

2

3

4

5

6

7

A

B

C

D

Ω
E

F

A

B C

D E F

level 0

level 1

level 2

Copyright © 1998 by Hanan Samet

tr17

• Rigorous definition of B(F)
 F = (T1, T2, …, Tn)
 Ti,1, Ti,2, …, Ti,m are subtrees of Ti
 1. If n = 0, B(F) is empty
 2. If n > 0, root of B(F) is root(T1)
 left subtree of B(F) is B(T1,1, T1,2, …, T1,m)
 right subtree of B(F) is B(T2, T3, …, Tn)

81
bFORESTS

• A forest is an ordered set of 0 or more trees
• There exists a natural correspondence between forests
 and binary trees

• Traversal of forests
 preorder: postorder:
 1. visit root of first tree 1. traverse subtrees of
 2. traverse subtrees of first tree in postorder
 first tree in preorder 2. visit root of first tree
 3. traverse remaining 3. traverse remaining
 subtrees in preorder subtrees in postorder

D

E F

H

G

JK

A

CB

A

C D

E

FH

K

B

GJ

Copyright © 1998 by Hanan Samet

tr17

• Rigorous definition of B(F)
 F = (T1, T2, …, Tn)
 Ti,1, Ti,2, …, Ti,m are subtrees of Ti
 1. If n = 0, B(F) is empty
 2. If n > 0, root of B(F) is root(T1)
 left subtree of B(F) is B(T1,1, T1,2, …, T1,m)
 right subtree of B(F) is B(T2, T3, …, Tn)

81
bFORESTS

• A forest is an ordered set of 0 or more trees
• There exists a natural correspondence between forests
 and binary trees

• Traversal of forests
 preorder: postorder:
 1. visit root of first tree 1. traverse subtrees of
 2. traverse subtrees of first tree in postorder
 first tree in preorder 2. visit root of first tree
 3. traverse remaining 3. traverse remaining
 subtrees in preorder subtrees in postorder

D

E F

H

G

JK

A

CB

A

C D

E

FH

K

B

GJ

Copyright © 1998 by Hanan Samet

tr172
r

preorder = A B C K D E H F J G

Copyright © 1998 by Hanan Samet

tr17

• Rigorous definition of B(F)
 F = (T1, T2, …, Tn)
 Ti,1, Ti,2, …, Ti,m are subtrees of Ti
 1. If n = 0, B(F) is empty
 2. If n > 0, root of B(F) is root(T1)
 left subtree of B(F) is B(T1,1, T1,2, …, T1,m)
 right subtree of B(F) is B(T2, T3, …, Tn)

81
bFORESTS

• A forest is an ordered set of 0 or more trees
• There exists a natural correspondence between forests
 and binary trees

• Traversal of forests
 preorder: postorder:
 1. visit root of first tree 1. traverse subtrees of
 2. traverse subtrees of first tree in postorder
 first tree in preorder 2. visit root of first tree
 3. traverse remaining 3. traverse remaining
 subtrees in preorder subtrees in postorder

D

E F

H

G

JK

A

CB

A

C D

E

FH

K

B

GJ

Copyright © 1998 by Hanan Samet

tr172
r

preorder = A B C K D E H F J G

Copyright © 1998 by Hanan Samet

tr173
z

postorder = B K C A H E J F G D

Copyright © 1998 by Hanan Samet

tr17

• Rigorous definition of B(F)
 F = (T1, T2, …, Tn)
 Ti,1, Ti,2, …, Ti,m are subtrees of Ti
 1. If n = 0, B(F) is empty
 2. If n > 0, root of B(F) is root(T1)
 left subtree of B(F) is B(T1,1, T1,2, …, T1,m)
 right subtree of B(F) is B(T2, T3, …, Tn)

81
bFORESTS

• A forest is an ordered set of 0 or more trees
• There exists a natural correspondence between forests
 and binary trees

• Traversal of forests
 preorder: postorder:
 1. visit root of first tree 1. traverse subtrees of
 2. traverse subtrees of first tree in postorder
 first tree in preorder 2. visit root of first tree
 3. traverse remaining 3. traverse remaining
 subtrees in preorder subtrees in postorder

D

E F

H

G

JK

A

CB

A

C D

E

FH

K

B

GJ

Copyright © 1998 by Hanan Samet

tr172
r

preorder = A B C K D E H F J G

Copyright © 1998 by Hanan Samet

tr173
z

postorder = B K C A H E J F G D

Copyright © 1998 by Hanan Samet

tr174
g

≡ inorder of binary tree

Copyright © 1998 by Hanan Samet

tr1881
b

EQUIVALENCE RELATION

• Given: relations as to what is equivalent to what (a≡b)
• Goal: is x ≡ y?

• Formal definition of an equivalence relation
 1. if x≡y and y≡z then x≡z (transitivity)
 2. if x≡y then y≡x (symmetry)
 3. x≡x (reflexivity)

• Ex: S = {1 .. 9}
 1≡5 6≡8 7≡2 9≡8 3≡7 4≡2 9≡3
 is 2 ≡ 6 ?

Copyright © 1998 by Hanan Samet

tr1881
b

EQUIVALENCE RELATION

• Given: relations as to what is equivalent to what (a≡b)
• Goal: is x ≡ y?

• Formal definition of an equivalence relation
 1. if x≡y and y≡z then x≡z (transitivity)
 2. if x≡y then y≡x (symmetry)
 3. x≡x (reflexivity)

• Ex: S = {1 .. 9}
 1≡5 6≡8 7≡2 9≡8 3≡7 4≡2 9≡3
 is 2 ≡ 6 ?

Copyright © 1998 by Hanan Samet

tr182
r

 Yes, since 2≡7≡3≡9≡8≡6

• Partitions S into disjoint subsets or equivalence classes
• Two elements equivalent iff they belong to same class
• What are the equivalence classes in this example?

Copyright © 1998 by Hanan Samet

tr1881
b

EQUIVALENCE RELATION

• Given: relations as to what is equivalent to what (a≡b)
• Goal: is x ≡ y?

• Formal definition of an equivalence relation
 1. if x≡y and y≡z then x≡z (transitivity)
 2. if x≡y then y≡x (symmetry)
 3. x≡x (reflexivity)

• Ex: S = {1 .. 9}
 1≡5 6≡8 7≡2 9≡8 3≡7 4≡2 9≡3
 is 2 ≡ 6 ?

Copyright © 1998 by Hanan Samet

tr182
r

 Yes, since 2≡7≡3≡9≡8≡6

• Partitions S into disjoint subsets or equivalence classes
• Two elements equivalent iff they belong to same class
• What are the equivalence classes in this example?

Copyright © 1998 by Hanan Samet

tr183
z

{1,5} and {2,3,4,6,7,8,9}

Copyright © 1998 by Hanan Samet

tr19

ALGORITHM

• Represent each element as a node in forest of trees
• Trees consist only of father links (nil at roots)
• Each (nonredundant) relation merges two trees into one
• Basic strategy:

• Algorithm (also known as union-find):

81
b

for each relation a ≡b do
 begin
 find root node r of tree containing a; /* Find step */
 find root node s of tree containing b;
 if they differ, merge the two trees; /* Union step */
 end;

for every element i do father(i) ←Ω
while input_not_exhausted do
 begin
 get_pair(a,b);
 while father(a) ≠Ω do a ←father(a);
 while father(b) ≠Ω do b ←father(b);
 if (a ≠b) then father(a) ←b;
 end;

father(k):
 k: 1 2 3 4 5 6 7 8 9

1

5 2

3 4

6

78

9

⇒
merge(a,b)

s

b

r

a

s

b

r

a

Copyright © 1998 by Hanan Samet

tr19

ALGORITHM

• Represent each element as a node in forest of trees
• Trees consist only of father links (nil at roots)
• Each (nonredundant) relation merges two trees into one
• Basic strategy:

• Algorithm (also known as union-find):

81
b

for each relation a ≡b do
 begin
 find root node r of tree containing a; /* Find step */
 find root node s of tree containing b;
 if they differ, merge the two trees; /* Union step */
 end;

for every element i do father(i) ←Ω
while input_not_exhausted do
 begin
 get_pair(a,b);
 while father(a) ≠Ω do a ←father(a);
 while father(b) ≠Ω do b ←father(b);
 if (a ≠b) then father(a) ←b;
 end;

father(k):
 k: 1 2 3 4 5 6 7 8 9

1

5 2

3 4

6

78

9

⇒
merge(a,b)

s

b

r

a

s

b

r

a

Copyright © 1998 by Hanan Samet

tr192
r

1≡5 5

Copyright © 1998 by Hanan Samet

tr19

ALGORITHM

• Represent each element as a node in forest of trees
• Trees consist only of father links (nil at roots)
• Each (nonredundant) relation merges two trees into one
• Basic strategy:

• Algorithm (also known as union-find):

81
b

for each relation a ≡b do
 begin
 find root node r of tree containing a; /* Find step */
 find root node s of tree containing b;
 if they differ, merge the two trees; /* Union step */
 end;

for every element i do father(i) ←Ω
while input_not_exhausted do
 begin
 get_pair(a,b);
 while father(a) ≠Ω do a ←father(a);
 while father(b) ≠Ω do b ←father(b);
 if (a ≠b) then father(a) ←b;
 end;

father(k):
 k: 1 2 3 4 5 6 7 8 9

1

5 2

3 4

6

78

9

⇒
merge(a,b)

s

b

r

a

s

b

r

a

Copyright © 1998 by Hanan Samet

tr192
r

1≡5 5

Copyright © 1998 by Hanan Samet

tr193
z

6≡8
8

Copyright © 1998 by Hanan Samet

tr19

ALGORITHM

• Represent each element as a node in forest of trees
• Trees consist only of father links (nil at roots)
• Each (nonredundant) relation merges two trees into one
• Basic strategy:

• Algorithm (also known as union-find):

81
b

for each relation a ≡b do
 begin
 find root node r of tree containing a; /* Find step */
 find root node s of tree containing b;
 if they differ, merge the two trees; /* Union step */
 end;

for every element i do father(i) ←Ω
while input_not_exhausted do
 begin
 get_pair(a,b);
 while father(a) ≠Ω do a ←father(a);
 while father(b) ≠Ω do b ←father(b);
 if (a ≠b) then father(a) ←b;
 end;

father(k):
 k: 1 2 3 4 5 6 7 8 9

1

5 2

3 4

6

78

9

⇒
merge(a,b)

s

b

r

a

s

b

r

a

Copyright © 1998 by Hanan Samet

tr192
r

1≡5 5

Copyright © 1998 by Hanan Samet

tr193
z

6≡8
8

Copyright © 1998 by Hanan Samet

tr194
v

7≡2

2

Copyright © 1998 by Hanan Samet

tr19

ALGORITHM

• Represent each element as a node in forest of trees
• Trees consist only of father links (nil at roots)
• Each (nonredundant) relation merges two trees into one
• Basic strategy:

• Algorithm (also known as union-find):

81
b

for each relation a ≡b do
 begin
 find root node r of tree containing a; /* Find step */
 find root node s of tree containing b;
 if they differ, merge the two trees; /* Union step */
 end;

for every element i do father(i) ←Ω
while input_not_exhausted do
 begin
 get_pair(a,b);
 while father(a) ≠Ω do a ←father(a);
 while father(b) ≠Ω do b ←father(b);
 if (a ≠b) then father(a) ←b;
 end;

father(k):
 k: 1 2 3 4 5 6 7 8 9

1

5 2

3 4

6

78

9

⇒
merge(a,b)

s

b

r

a

s

b

r

a

Copyright © 1998 by Hanan Samet

tr192
r

1≡5 5

Copyright © 1998 by Hanan Samet

tr193
z

6≡8
8

Copyright © 1998 by Hanan Samet

tr194
v

7≡2

2

Copyright © 1998 by Hanan Samet

tr195
g

9≡8

8

Copyright © 1998 by Hanan Samet

tr19

ALGORITHM

• Represent each element as a node in forest of trees
• Trees consist only of father links (nil at roots)
• Each (nonredundant) relation merges two trees into one
• Basic strategy:

• Algorithm (also known as union-find):

81
b

for each relation a ≡b do
 begin
 find root node r of tree containing a; /* Find step */
 find root node s of tree containing b;
 if they differ, merge the two trees; /* Union step */
 end;

for every element i do father(i) ←Ω
while input_not_exhausted do
 begin
 get_pair(a,b);
 while father(a) ≠Ω do a ←father(a);
 while father(b) ≠Ω do b ←father(b);
 if (a ≠b) then father(a) ←b;
 end;

father(k):
 k: 1 2 3 4 5 6 7 8 9

1

5 2

3 4

6

78

9

⇒
merge(a,b)

s

b

r

a

s

b

r

a

Copyright © 1998 by Hanan Samet

tr192
r

1≡5 5

Copyright © 1998 by Hanan Samet

tr193
z

6≡8
8

Copyright © 1998 by Hanan Samet

tr194
v

7≡2

2

Copyright © 1998 by Hanan Samet

tr195
g

9≡8

8

Copyright © 1998 by Hanan Samet

tr196
r

3≡7

2

Copyright © 1998 by Hanan Samet

tr19

ALGORITHM

• Represent each element as a node in forest of trees
• Trees consist only of father links (nil at roots)
• Each (nonredundant) relation merges two trees into one
• Basic strategy:

• Algorithm (also known as union-find):

81
b

for each relation a ≡b do
 begin
 find root node r of tree containing a; /* Find step */
 find root node s of tree containing b;
 if they differ, merge the two trees; /* Union step */
 end;

for every element i do father(i) ←Ω
while input_not_exhausted do
 begin
 get_pair(a,b);
 while father(a) ≠Ω do a ←father(a);
 while father(b) ≠Ω do b ←father(b);
 if (a ≠b) then father(a) ←b;
 end;

father(k):
 k: 1 2 3 4 5 6 7 8 9

1

5 2

3 4

6

78

9

⇒
merge(a,b)

s

b

r

a

s

b

r

a

Copyright © 1998 by Hanan Samet

tr192
r

1≡5 5

Copyright © 1998 by Hanan Samet

tr193
z

6≡8
8

Copyright © 1998 by Hanan Samet

tr194
v

7≡2

2

Copyright © 1998 by Hanan Samet

tr195
g

9≡8

8

Copyright © 1998 by Hanan Samet

tr196
r

3≡7

2

Copyright © 1998 by Hanan Samet

tr197
z

4≡2

2

Copyright © 1998 by Hanan Samet

tr19

ALGORITHM

• Represent each element as a node in forest of trees
• Trees consist only of father links (nil at roots)
• Each (nonredundant) relation merges two trees into one
• Basic strategy:

• Algorithm (also known as union-find):

81
b

for each relation a ≡b do
 begin
 find root node r of tree containing a; /* Find step */
 find root node s of tree containing b;
 if they differ, merge the two trees; /* Union step */
 end;

for every element i do father(i) ←Ω
while input_not_exhausted do
 begin
 get_pair(a,b);
 while father(a) ≠Ω do a ←father(a);
 while father(b) ≠Ω do b ←father(b);
 if (a ≠b) then father(a) ←b;
 end;

father(k):
 k: 1 2 3 4 5 6 7 8 9

1

5 2

3 4

6

78

9

⇒
merge(a,b)

s

b

r

a

s

b

r

a

Copyright © 1998 by Hanan Samet

tr192
r

1≡5 5

Copyright © 1998 by Hanan Samet

tr193
z

6≡8
8

Copyright © 1998 by Hanan Samet

tr194
v

7≡2

2

Copyright © 1998 by Hanan Samet

tr195
g

9≡8

8

Copyright © 1998 by Hanan Samet

tr196
r

3≡7

2

Copyright © 1998 by Hanan Samet

tr197
z

4≡2

2

Copyright © 1998 by Hanan Samet

tr198
g

9≡3

2

Copyright © 1998 by Hanan Samet

tr19

ALGORITHM

• Represent each element as a node in forest of trees
• Trees consist only of father links (nil at roots)
• Each (nonredundant) relation merges two trees into one
• Basic strategy:

• Algorithm (also known as union-find):

81
b

for each relation a ≡b do
 begin
 find root node r of tree containing a; /* Find step */
 find root node s of tree containing b;
 if they differ, merge the two trees; /* Union step */
 end;

for every element i do father(i) ←Ω
while input_not_exhausted do
 begin
 get_pair(a,b);
 while father(a) ≠Ω do a ←father(a);
 while father(b) ≠Ω do b ←father(b);
 if (a ≠b) then father(a) ←b;
 end;

father(k):
 k: 1 2 3 4 5 6 7 8 9

1

5 2

3 4

6

78

9

⇒
merge(a,b)

s

b

r

a

s

b

r

a

Copyright © 1998 by Hanan Samet

tr192
r

1≡5 5

Copyright © 1998 by Hanan Samet

tr193
z

6≡8
8

Copyright © 1998 by Hanan Samet

tr194
v

7≡2

2

Copyright © 1998 by Hanan Samet

tr195
g

9≡8

8

Copyright © 1998 by Hanan Samet

tr196
r

3≡7

2

Copyright © 1998 by Hanan Samet

tr197
z

4≡2

2

Copyright © 1998 by Hanan Samet

tr198
g

9≡3

2

Copyright © 1998 by Hanan Samet

tr19
b
9

• More efficient with path compression and weight balancing

• Execution time “almost linear” (inverse of Ackermann function)

Copyright © 1998 by Hanan Samet

