
CMSC 430, Jan 30th 2020

OCaml to Racket

1

Admin take 2

2

Admin take 2

• My name: José

3

Admin take 2

• My name: José

• My email (for now): jmct@jmct.cc

4

Admin take 2

• My name: José

• My email (for now): jmct@jmct.cc

• Website:

cs.umd.edu/class/spring2020/cmsc430/

5

OCaml, my Caml

6

OCaml, my Caml

• OCaml is nice.

7

OCaml, my Caml

• OCaml is nice.

• It’s got all the trimmings of a modern ergonomic
programming languages

8

OCaml, my Caml

• OCaml is nice.

• It’s got all the trimmings of a modern ergonomic
programming languages

Garbage Collection

9

OCaml, my Caml

• OCaml is nice.

• It’s got all the trimmings of a modern ergonomic
programming languages

Garbage Collection

Higher-order functions

10

OCaml, my Caml

• OCaml is nice.

• It’s got all the trimmings of a modern ergonomic
programming languages

Garbage Collection

Higher-order functions

Anonymous functions

11

OCaml, my Caml

• OCaml is nice.

• It’s got all the trimmings of a modern ergonomic
programming languages

Garbage Collection

Higher-order functions

Anonymous functions

Generic types (via parametric polymorphism)

12

OCaml, my Caml

• OCaml is nice.

• It’s got all the trimmings of a modern ergonomic
programming languages

Garbage Collection

Higher-order functions

Anonymous functions

Generic types (via parametric polymorphism)

Pattern matching

13

OCaml, my Caml

• OCaml is nice.

• It’s got all the trimmings of a modern ergonomic
programming languages

Garbage Collection

Higher-order functions

Anonymous functions

Generic types (via parametric polymorphism)

Pattern matching

Kind of amazing that it’s over 30 years old!

14

Bop it, twist it, Racket!

15

Bop it, twist it, Racket!

• In this course we are going to use Racket

16

Bop it, twist it, Racket!

• In this course we are going to use Racket

Don’t let this worry you, your OCaml skills will
apply!

17

Bop it, twist it, Racket!

• In this course we are going to use Racket

Don’t let this worry you, your OCaml skills will
apply!

This lecture and the next will be about learning
how to transfer those skills

18

What a Racket

19

What a Racket

• In the 90s, the PL group Northeastern University

had developed PLT Scheme, a dialect of LISP

20

What a Racket

• In the 90s, the PL group Northeastern University

had developed PLT Scheme, a dialect of LISP

• Eventually (in 2010), the differences between

PLT Scheme and scheme could no longer be
reconciled

21

What a Racket

• In the 90s, the PL group Northeastern University

had developed PLT Scheme, a dialect of LISP

• Eventually (in 2010), the differences between

PLT Scheme and scheme could no longer be
reconciled

• So PLT Scheme was renamed to Racket

22

Why?

23

Why?

• PLT Scheme was original aimed as a

pedagogical tool for those learning
programming and PLT

24

Why?

• PLT Scheme was original aimed as a

pedagogical tool for those learning
programming and PLT

• Racket has a notion of ’language levels’

25

Why?

• PLT Scheme was original aimed as a

pedagogical tool for those learning
programming and PLT

• Racket has a notion of ’language levels’

This allows features to be enabled/disabled so
that they can be learned/understood
individually

26

Why?

• PLT Scheme was original aimed as a

pedagogical tool for those learning
programming and PLT

• Racket has a notion of ’language levels’

This allows features to be enabled/disabled so
that they can be learned/understood
individually

This idea was extended even further to allow
user-defined custom languages (which can be
used as DSLs!)

27

Racket Code

Racket code can take a bit to get used to reading,
but its uniform structure makes it easy to learn

28

Racket Code

Racket code can take a bit to get used to reading,
but its uniform structure makes it easy to learn

The code for the first slide looked like this:

(slide
 #:title "OCaml to Racket"
 (item "CMSC 430, Jan 30th 2020"))

29

Do people use it?

30

Do people use it?

• Racket is still used today

31

Do people use it?

• Racket is still used today

Primarily as a research tool (mostly academia,
some industry)

32

Do people use it?

• Racket is still used today

Primarily as a research tool (mostly academia,
some industry)

As a platform for experimenting with all
aspects of programming language design

33

Racket, how to get it:

34

Racket, how to get it:

• You’ve got some options

35

Racket, how to get it:

• You’ve got some options

go to download.racket-lang.org

36

Racket, how to get it:

• You’ve got some options

go to download.racket-lang.org

Use a package manager
(apt/yum/pacman/homebrew/etc.)

37

Racket, how to get it:

• You’ve got some options

go to download.racket-lang.org

Use a package manager
(apt/yum/pacman/homebrew/etc.)

Wait until we get a server set up for you all

38

Racket, how to use it:

39

Racket, how to use it:

• You’ve got some options!

40

Racket, how to use it:

• You’ve got some options!

Use Dr. Racket, the IDE made and supported
by the Racket team

41

Racket, how to use it:

• You’ve got some options!

Use Dr. Racket, the IDE made and supported
by the Racket team

Be like me, from the 80’s, and develop
everything in a text editor

42

A R.E.P.L. (or repl)

430>

43

Arithmetic

44

Arithmetic

• In OCaml, arithmetic was pretty straightforward:

45

Arithmetic

• In OCaml, arithmetic was pretty straightforward:

> 1 + 2 * 2;;

- : int = 5

46

Arithmetic

• In OCaml, arithmetic was pretty straightforward:

> (1) + (2 * 2);;

- : int = 5

47

Arithmetic

• In OCaml, arithmetic was pretty straightforward:

> (((1))) + ((2) * 2);;

- : int = 5

48

Arithmetic in Racket

49

Arithmetic in Racket

• In Racket, an open bracket, (, means function
application

50

Arithmetic in Racket

• In Racket, an open bracket, (, means function
application

430>

51

Arithmetic in Racket

• This mean redundant brackets don’t mean what
you think!

52

Arithmetic in Racket

• This mean redundant brackets don’t mean what
you think!

430>

53

Fun(ctions)!

54

Fun(ctions)!

• Anonymous functions were straightforward in
OCaml

55

Fun(ctions)!

• Anonymous functions were straightforward in
OCaml

> fun x y -> x + y;;

- : int -> int -> int = <fun>

56

Fun(ctions)!

• Anonymous functions were straightforward in
OCaml

> (fun x y -> x + y) 3 4;;

- : int = 7

57

Fun(ctions)!

• Anonymous functions were straightforward in
OCaml

> (fun x y -> x + y) 3;;

- : int -> int = <fun>

58

Fun(ctions)!

• Anonymous functions were straightforward in
OCaml

> (fun x y -> x + y) 3;;

- : int -> int = <fun>

Partial application!

59

Fun in Racket

60

Fun in Racket

• In OCaml we had: fun x y -> x + y

61

Fun in Racket

• In OCaml we had: fun x y -> x + y

• What’s that look like in Racket?

62

Fun in Racket

• In OCaml we had: fun x y -> x + y

• What’s that look like in Racket?

430>

63

Get the clickers out

64

Get the clickers out

• What’s this mean, in Racket?

430> (λ (x)
 (λ (y)
 (+ x y))) 3 4

65

Get the clickers out

• What’s this mean, in Racket?

430> (λ (x)
 (λ (y)
 (+ x y))) 3 4

A) 7

66

Get the clickers out

• What’s this mean, in Racket?

430> (λ (x)
 (λ (y)
 (+ x y))) 3 4

A) 7

B) error

67

Get the clickers out

• What’s this mean, in Racket?

430> (λ (x)
 (λ (y)
 (+ x y))) 3 4

A) 7

B) error

C) Something else

68

The right way

69

The right way

430> ((λ (x)
 (λ (y)
 (+ x y))) 3 4)

70

Fun in Racket

71

Fun in Racket

• In OCaml we had:

(fun (x, y) -> x + y) (3, 4)

72

Fun in Racket

• In OCaml we had:

(fun (x, y) -> x + y) (3, 4)

• What’s that look like in Racket?

73

Fun in Racket

• In OCaml we had:

(fun (x, y) -> x + y) (3, 4)

• What’s that look like in Racket?

430> ((λ (x y)
 (+ x y)) ??)

74

Let’s take a look

75

Let’s take a look

• Definitions in OCaml used let

76

Let’s take a look

• Definitions in OCaml used let

> let x = 3;;

val x : int = 3

77

Let’s take a look

• Definitions in OCaml used let

> let y = 4;;

val y : int = 4

78

Let’s take a look

• Definitions in OCaml used let

> x + y;;

- : int = 7

79

Let’s take a look

• Definitions in OCaml used let

• This is true for functions, too

80

Let’s take a look

• Definitions in OCaml used let

• This is true for functions, too

> let mul a b = a * b;;

val mul : int -> int -> int = <fun>

81

Let’s take a look

• Definitions in OCaml used let

• This is true for functions, too

> let mul a b = a * b;;

val mul : int -> int -> int = <fun>

> mul x y;;

- : int = 12

82

Defs in Racket

83

Defs in Racket

• In Racket we define things with define

84

Defs in Racket

• In Racket we define things with define

430> (define x 3)
 (define y 4)
 (+ x y)

85

Defs in Racket

• In Racket we define things with define

• Also true for functions

86

Defs in Racket

• In Racket we define things with define

• Also true for functions

430> (define mul
 (λ (a b)
 (* a b)))
 (mul 3 4)

87

Defs in Racket

• There’s a shorthand for function definitions that
lets us avoid the lambda

(define (mul a b)
 (* a b))

88

Lists

89

Lists

• Lists are the bread-and-butter of functional
programming

90

Lists

• Lists are the bread-and-butter of functional
programming

> 1 :: 2 :: 3 :: [];;

- : int list = [1; 2; 3]

91

Pros and Cons

92

Pros and Cons

• What’s that look like in Racket?

93

Pros and Cons

• What’s that look like in Racket?

430> (cons 1 (cons 2 (cons 3 '())))

94

Pros and Cons

• Luckily there’s a helper function for this

95

Pros and Cons

• Luckily there’s a helper function for this

430> (list 1 2 3)

96

Get the clickers out

97

Get the clickers out

• Is this a valid OCaml definition?

• let xs = ["jazz"; 1959];;

98

Get the clickers out

• Is this a valid OCaml definition?

• let xs = ["jazz"; 1959];;

A) Yes

99

Get the clickers out

• Is this a valid OCaml definition?

• let xs = ["jazz"; 1959];;

A) Yes

B) No

100

Get the clickers out

• Is this a valid OCaml definition?

• let xs = ["jazz"; 1959];;

A) Yes

B) No

C) I don’t understand the question and I won’t
respond to it.

101

Pros of Cons

• Racket is Dynamically typed, so the following is
perfectly valid

102

Pros of Cons

• Racket is Dynamically typed, so the following is
perfectly valid

430> (list "jazz" 1959)

103

Pairs _are_ Cons

• Because Racket is dynamically typed,
constructing pairs is the same thing as
constructing lists

104

Pairs _are_ Cons

• Because Racket is dynamically typed,
constructing pairs is the same thing as
constructing lists

430> (cons "jazz" 1959)
 (cons "hip hop" 2015)

105

Assignment #1

106

Assignment #1

• Learning about a Programming Language

107

Assignment #1

• Learning about a Programming Language

• Email me the solution, ensuring that the subject

starts with [Assignment 1]

108

Assignment #1

• Learning about a Programming Language

• Email me the solution, ensuring that the subject

starts with [Assignment 1]

• Details are posted on the website (including which
languages you can’t discuss)

109

Assignment #1

• Learning about a Programming Language

• Email me the solution, ensuring that the subject

starts with [Assignment 1]

• Details are posted on the website (including which
languages you can’t discuss)

• The first few slides of this lecture (about Racket)
is basically the level of detail I’m looking for

110

Assignment #1

• Learning about a Programming Language

• Email me the solution, ensuring that the subject

starts with [Assignment 1]

• Details are posted on the website (including which
languages you can’t discuss)

• The first few slides of this lecture (about Racket)
is basically the level of detail I’m looking for

• Go, you’re free.

111

CMSC 430, Feb 4th 2020

OCaml to Racket, Part 2

112

Lists (cons) of pairs (cons)

113

Lists (cons) of pairs (cons)

• Structured data is nice, let’s make a dictionary.

114

Lists (cons) of pairs (cons)

• Structured data is nice, let’s make a dictionary.

430> (require "genre-years.rkt")

115

Destructors

430> (require "genre-years.rkt")

116

Destructors 2

117

Destructors 2

• What would car and cdr do on lists?

118

Destructors 2

• What would car and cdr do on lists?

(car '(1 2 3)) ==> ????

(cdr '(1 2 3)) ==> ????

119

Destructors 3

120

Destructors 3

• Do yourself a favor

121

Destructors 3

• Do yourself a favor

(define fst car)
(define snd cdr)

122

Pattern Matching!

• Just like in OCaml, we can pattern match to help
us define functions

123

Pattern Matching!

• Just like in OCaml, we can pattern match to help
us define functions

(define (swap p)
 (match p
 [(cons x y) (cons y x)]))

124

Pattern Matching!

• Just like in OCaml, we can pattern match to help
us define functions

(define (is-two-or-four n)
 (match n
 [2 #t]
 [4 #t]
 [_ #f]))

125

Pattern Matching!

• Just like in OCaml, we can pattern match to help
us define functions

(define (sum xs)
 (match xs
 ['() 0]
 [(cons y ys)

(+ x (sum xs))]))

126

Datatypes

127

Datatypes

• One of the more elegant features of
typed-functional PLs is algebraic datatypes

128

Datatypes

• One of the more elegant features of
typed-functional PLs is algebraic datatypes

type bt = Leaf | Node of int * bt * bt

129

Datatypes

• One of the more elegant features of
typed-functional PLs is algebraic datatypes

type bt = Leaf | Node of int * bt * bt

Defining and then pattern matching on ADTs is
a very powerful tool for reasoning about
programs

130

Datatypes

• One of the more elegant features of
typed-functional PLs is algebraic datatypes

• Racket does not have ADTs directly, but we can

get close with struct

131

Datatypes

• One of the more elegant features of
typed-functional PLs is algebraic datatypes

• Racket does not have ADTs directly, but we can

get close with struct

struct lets us define a structured value

132

Datatypes

• One of the more elegant features of
typed-functional PLs is algebraic datatypes

• Racket does not have ADTs directly, but we can

get close with struct

struct lets us define a structured value

i.e. like a single constructor from a datatype in
OCaml

133

Datatypes

• One of the more elegant features of
typed-functional PLs is algebraic datatypes

• Racket does not have ADTs directly, but we can

get close with struct

struct lets us define a structured value

i.e. like a single constructor from a datatype in
OCaml

But then we can use it for pattern matching!

134

Structs

135

Structs

• Let’s try to emulate the binary tree we showed in
OCaml

136

Structs

• Let’s try to emulate the binary tree we showed in
OCaml

(struct leaf ())

137

Structs

• Let’s try to emulate the binary tree we showed in
OCaml

(struct leaf ())

(struct node (i left right))

138

Structs in the REPL

430> (struct leaf ())
 (struct node (i left right))

139

Pattern matching on structs

140

Pattern matching on structs

• Defining a function that checks whether a tree is
empty

141

Pattern matching on structs

• Defining a function that checks whether a tree is
empty

(define (bt-empty? bt)
 (match bt
 [(leaf) #t]
 [(node _ _ _) #f]))

142

Defining accessors

143

Defining accessors

(define (get-elem bt)
 (match bt
 [(leaf) '()]
 [(node i _ _) (cons i '())]))

144

It may tick of you off, but symbols matter

145

It may tick of you off, but symbols matter

• Symbols are preceded by the '

146

It may tick of you off, but symbols matter

• Symbols are preceded by the '

• You don’t have to define them beforehand, you
can just use them:

147

It may tick of you off, but symbols matter

• Symbols are preceded by the '

• You don’t have to define them beforehand, you
can just use them:

'All 'of 'these 'are 'symbols

148

It may tick of you off, but symbols matter

• Symbols are preceded by the '

• You don’t have to define them beforehand, you
can just use them:

'All 'of 'these 'are 'symbols

• Equality on symbols is what you might expect:

149

It may tick of you off, but symbols matter

• Symbols are preceded by the '

• You don’t have to define them beforehand, you
can just use them:

'All 'of 'these 'are 'symbols

• Equality on symbols is what you might expect:

430> (equal? 'Λ 'Λ)
 (equal? 'José 'Jose)

150

A Symbol unlike any other

151

A Symbol unlike any other

• In compilers we often need symbols that can’t
clash with any existing symbols

152

A Symbol unlike any other

• In compilers we often need symbols that can’t
clash with any existing symbols

Anything that gives you such a symbol is
considered a source of ’fresh names’

153

A Symbol unlike any other

• In compilers we often need symbols that can’t
clash with any existing symbols

Anything that gives you such a symbol is
considered a source of ’fresh names’

• In Racket:

430> (gensym)
 (gensym)
 (gensym)

154

For the enumerated type in your life

155

For the enumerated type in your life

• If OCaml we could write the following type:

156

For the enumerated type in your life

• If OCaml we could write the following type:

type Beatles = JohnL | PaulM

 | GeorgeH | RingoS

 | BillyP | GeorgeM

157

For the enumerated type in your life

• If OCaml we could write the following type:

type Beatles = JohnL | PaulM

 | GeorgeH | RingoS

 | BillyP | GeorgeM

• In Racket:

(define beatles (list 'JohnL 'PaulM
'GeorgeH 'RingoS
'BillyP 'GeorgeM))

(define (beatle? p)
 (member p beatles))

158

Code = Data

159

Code = Data

• We’ve already seen one of Racket’s most
powerful features: Quote/Unquote

160

Code = Data

• We’ve already seen one of Racket’s most
powerful features: Quote/Unquote

Now we’re going to look at it a little closer

161

Code = Data

• We’ve already seen one of Racket’s most
powerful features: Quote/Unquote

Now we’re going to look at it a little closer

'(x y z) == (list 'x 'y 'z)

162

Code = Data

• We’ve already seen one of Racket’s most
powerful features: Quote/Unquote

Now we’re going to look at it a little closer

'(x y z) == (list 'x 'y 'z)

• In Racket ' is known as quote

163

Code = Data

164

Code = Data

• A quoted thing can always be represented as an

unquoted thing by pushing the ' `inwards’

165

Code = Data

• A quoted thing can always be represented as an

unquoted thing by pushing the ' `inwards’

• ' `stop’ at symbols (i.e. 'PaulM) or empty

brackets '()

166

Code = Data

• A quoted thing can always be represented as an

unquoted thing by pushing the ' `inwards’

• ' `stop’ at symbols (i.e. 'PaulM) or empty

brackets '()

• ' goes away at booleans, strings, and numbers.
So:

167

Code = Data

• A quoted thing can always be represented as an

unquoted thing by pushing the ' `inwards’

• ' `stop’ at symbols (i.e. 'PaulM) or empty

brackets '()

• ' goes away at booleans, strings, and numbers.
So:

'3 == 3

'"String" == "String"

'#t == #t

168

Oh, pairs.

169

Oh, pairs.

• If '(1 2) means (list '1 '2)

170

Oh, pairs.

• If '(1 2) means (list '1 '2)

How would we write something that means

(cons '1 '2)?

171

Oh, pairs.

• If '(1 2) means (list '1 '2)

How would we write something that means

(cons '1 '2)?

... We have to add syntax :(

172

Oh, pairs.

• If '(1 2) means (list '1 '2)

How would we write something that means

(cons '1 '2)?

... We have to add syntax :(

• '(1 . 2)

173

When you what to quote, but only kinda.

174

When you what to quote, but only kinda.

• If you use ` it works a lot like '

175

When you what to quote, but only kinda.

• If you use ` it works a lot like '

`(a b c) == (list `a `b `c)

176

When you what to quote, but only kinda.

• If you use ` it works a lot like '

`(a b c) == (list `a `b `c)

• In fact, there is only one difference

177

When you what to quote, but only kinda.

• If you use ` it works a lot like '

`(a b c) == (list `a `b `c)

• In fact, there is only one difference

` works exactly like quote, unless it

encounters a ,

178

When you what to quote, but only kinda.

• If you use ` it works a lot like '

`(a b c) == (list `a `b `c)

• In fact, there is only one difference

` works exactly like quote, unless it

encounters a ,

`,e == e

179

When you what to quote, but only kinda.

• If you use ` it works a lot like '

`(a b c) == (list `a `b `c)

• In fact, there is only one difference

` works exactly like quote, unless it

encounters a ,

`,e == e

• These are known as quasiquote and unquote,
respectively.

180

• What result should this give us?

430> `(+ 1 ,(+ 1 1))

181

• What about this?

430> `(+ 1 ,(+ 1 1) 1)

182

Flipping the bit on binary trees

183

Flipping the bit on binary trees

• We showed how to do binary trees with structs

184

Flipping the bit on binary trees

• We showed how to do binary trees with structs

• Another pattern in Racket is to encode ADTs as
s-expressions (all the things you can
quote/unquote)

185

Flipping the bit on binary trees

• We showed how to do binary trees with structs

• Another pattern in Racket is to encode ADTs as
s-expressions (all the things you can
quote/unquote)

430> 'leaf
'(node 3 leaf leaf)

186

Flipping the bit on binary trees

• We showed how to do binary trees with structs

• Another pattern in Racket is to encode ADTs as
s-expressions (all the things you can
quote/unquote)

430> 'leaf
'(node 3 leaf leaf)

• Note that leaf and node are just symbols!

187

Let’s study this code together

188

Let’s study this code together

(define (bt-height bt)
 (match bt
 [`leaf 0]
 [`(node ,_ ,left ,right)

(+ 1 (max (bt-height left)
(bt-height right)))]))

189

To catch them is my real test.

430> (require rackunit)
(check-equal? (* 2 3) 7)

190

Some final thoughts

191

Some final thoughts

• Read the lecture notes!

192

Some final thoughts

• Read the lecture notes!

There is material on testing racket code, and
how to define and import modules

193

