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Admin take 2

• My name: José

• My email (for now):  jmct@jmct.cc

• Website: 

cs.umd.edu/class/spring2020/cmsc430/
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OCaml, my Caml

• OCaml is nice.

• It’s got all the trimmings of a modern ergonomic
programming languages

Garbage Collection

Higher-order functions

Anonymous functions

Generic types (via parametric polymorphism)

Pattern matching

Kind of amazing that it’s over 30 years old!
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Bop it, twist it, Racket!

• In this course we are going to use Racket

Don’t let this worry you, your OCaml skills will
apply!

This lecture and the next will be about learning
how to transfer those skills
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What a Racket

• In the 90s, the PL group Northeastern University

had developed PLT Scheme, a dialect of LISP

• Eventually (in 2010), the differences between

PLT Scheme and scheme could no longer be
reconciled

• So PLT Scheme was renamed to Racket
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Why?

• PLT Scheme was original aimed as a

pedagogical tool for those learning
programming and PLT

• Racket has a notion of ’language levels’

This allows features to be enabled/disabled so
that they can be learned/understood
individually

This idea was extended even further to allow
user-defined custom languages (which can be
used as DSLs!)
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Racket Code

Racket code can take a bit to get used to reading,
but its uniform structure makes it easy to learn

The code for the first slide looked like this:

(slide
   #:title "OCaml to Racket"
   (item "CMSC 430, Jan 30th 2020"))
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Do people use it?

• Racket is still used today

Primarily as a research tool (mostly academia,
some industry)

As a platform for experimenting with all
aspects of programming language design
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Racket, how to get it:

• You’ve got some options

go to download.racket-lang.org

Use a package manager
(apt/yum/pacman/homebrew/etc.)

Wait until we get a server set up for you all
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Racket, how to use it:

• You’ve got some options!

Use Dr. Racket, the IDE made and supported
by the Racket team

Be like me, from the 80’s, and develop
everything in a text editor
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A R.E.P.L. (or repl)

430> 
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Arithmetic

• In OCaml, arithmetic was pretty straightforward:

> (((1))) + ((2) * 2);;

- : int = 5
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• In Racket, an open bracket, (, means function
application

430> 
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• This mean redundant brackets don’t mean what
you think!

430> 
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Fun(ctions)!

• Anonymous functions were straightforward in
OCaml

> (fun x y -> x + y) 3;;

- : int -> int = <fun>

Partial application!
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• In OCaml we had: fun x y -> x + y

• What’s that look like in Racket?

430> 
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Get the clickers out

• What’s this mean, in Racket?

430> (λ (x)
        (λ (y)
           (+ x y))) 3 4

A) 7 

B) error

C) Something else
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The right way

430> ((λ (x)
        (λ (y)
           (+ x y))) 3 4)
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Fun in Racket

• In OCaml we had:

(fun (x, y) -> x + y) (3, 4)

• What’s that look like in Racket?
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Fun in Racket

• In OCaml we had:

(fun (x, y) -> x + y) (3, 4)

• What’s that look like in Racket?

430> ((λ (x y)
        (+ x y)) ??)
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> let y = 4;;

val y : int = 4
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• This is true for functions, too

> let mul a b = a * b;;

val mul : int -> int -> int = <fun>

81



Let’s take a look

• Definitions in OCaml used let

• This is true for functions, too

> let mul a b = a * b;;

val mul : int -> int -> int = <fun>

> mul x y;;

- : int = 12
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Defs in Racket

• In Racket we define things with define

430> (define x 3)
     (define y 4)
     (+ x y)
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Defs in Racket

• In Racket we define things with define

• Also true for functions

430> (define mul
       (λ (a b)
          (* a b)))
     (mul 3 4)
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Defs in Racket

• There’s a shorthand for function definitions that
lets us avoid the lambda

(define (mul a b)
  (* a b))
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Lists

• Lists are the bread-and-butter of functional
programming

> 1 :: 2 :: 3 :: [];;

- : int list = [1; 2; 3]
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Pros and Cons

• What’s that look like in Racket?

430> (cons 1 (cons 2 (cons 3 '())))
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Pros and Cons

• Luckily there’s a helper function for this

430> (list 1 2 3)
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Get the clickers out

• Is this a valid OCaml definition?

• let xs = ["jazz"; 1959];;

A) Yes

B) No

C) I don’t understand the question and I won’t
respond to it.
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Pros of Cons

• Racket is Dynamically typed, so the following is
perfectly valid

430> (list "jazz" 1959)
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Pairs _are_ Cons

• Because Racket is dynamically typed,
constructing pairs is the same thing as
constructing lists

430> (cons "jazz" 1959)
       (cons "hip hop" 2015)
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Assignment #1

• Learning about a Programming Language

• Email me the solution, ensuring that the subject

starts with [Assignment 1]

• Details are posted on the website (including which
languages you can’t discuss)

• The first few slides of this lecture (about Racket)
is basically the level of detail I’m looking for
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Assignment #1

• Learning about a Programming Language

• Email me the solution, ensuring that the subject

starts with [Assignment 1]

• Details are posted on the website (including which
languages you can’t discuss)

• The first few slides of this lecture (about Racket)
is basically the level of detail I’m looking for

• Go, you’re free.
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OCaml to Racket, Part 2
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Lists (cons) of pairs (cons)

• Structured data is nice, let’s make a dictionary.

430> (require "genre-years.rkt")
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Destructors

430> (require "genre-years.rkt")
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Destructors 2

• What would car and cdr do on lists?

(car '(1 2 3)) ==> ????

(cdr '(1 2 3)) ==> ????
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Destructors 3

• Do yourself a favor

(define fst car)
(define snd cdr)
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Pattern Matching!

• Just like in OCaml, we can pattern match to help
us define functions

(define (swap p)
  (match p
  [(cons x y) (cons y x)]))
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Pattern Matching!

• Just like in OCaml, we can pattern match to help
us define functions

(define (is-two-or-four n)
  (match n
  [2 #t]
  [4 #t]
  [_ #f]))
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Pattern Matching!

• Just like in OCaml, we can pattern match to help
us define functions

(define (sum xs)
  (match xs
  ['() 0]
  [(cons y ys)

(+ x (sum xs))]))
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Datatypes
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type bt = Leaf | Node of int * bt * bt
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Datatypes

• One of the more elegant features of
typed-functional PLs is algebraic datatypes

type bt = Leaf | Node of int * bt * bt

Defining and then pattern matching on ADTs is
a very powerful tool for reasoning about
programs
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Datatypes

• One of the more elegant features of
typed-functional PLs is algebraic datatypes

• Racket does not have ADTs directly, but we can

get close with struct

struct lets us define a structured value

i.e. like a single constructor from a datatype in
OCaml

But then we can use it for pattern matching!

134



Structs

135



Structs

• Let’s try to emulate the binary tree we showed in
OCaml

136



Structs

• Let’s try to emulate the binary tree we showed in
OCaml

(struct leaf ())

137



Structs

• Let’s try to emulate the binary tree we showed in
OCaml

(struct leaf ())

(struct node (i left right))
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Structs in the REPL

430> (struct leaf ())
     (struct node (i left right))
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Pattern matching on structs

• Defining a function that checks whether a tree is
empty

(define (bt-empty? bt)
  (match bt
  [(leaf)       #t]
  [(node _ _ _) #f]))
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Defining accessors
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Defining accessors

(define (get-elem bt)
  (match bt
  [(leaf)       '()]
  [(node i _ _) (cons i '())]))
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It may tick of you off, but symbols matter

• Symbols are preceded by the '

• You don’t have to define them beforehand, you
can just use them:

'All 'of 'these 'are 'symbols

• Equality on symbols is what you might expect:

430> (equal? 'Λ 'Λ)
     (equal? 'José 'Jose)
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A Symbol unlike any other

• In compilers we often need symbols that can’t
clash with any existing symbols

Anything that gives you such a symbol is
considered a source of ’fresh names’

• In Racket:

430> (gensym)
     (gensym)
     (gensym)
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             | BillyP  | GeorgeM
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For the enumerated type in your life

• If OCaml we could write the following type:

type Beatles = JohnL   | PaulM

             | GeorgeH | RingoS

             | BillyP  | GeorgeM

• In Racket:

(define beatles (list 'JohnL 'PaulM
'GeorgeH 'RingoS
'BillyP 'GeorgeM))

(define (beatle? p)
  (member p beatles))
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Code = Data

• We’ve already seen one of Racket’s most
powerful features: Quote/Unquote

Now we’re going to look at it a little closer

'(x y z) == (list 'x 'y 'z)

• In Racket ' is known as quote
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Code = Data

• A quoted thing can always be represented as an

unquoted thing by pushing the ' `inwards’

• ' `stop’ at symbols (i.e. 'PaulM) or empty

brackets '()

• ' goes away at booleans, strings, and numbers.
So:
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Code = Data

• A quoted thing can always be represented as an

unquoted thing by pushing the ' `inwards’

• ' `stop’ at symbols (i.e. 'PaulM) or empty

brackets '()

• ' goes away at booleans, strings, and numbers.
So:

'3          == 3

'"String"   == "String"

'#t         == #t
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Oh, pairs.

• If '(1 2) means (list '1 '2)

How would we write something that means

(cons '1 '2)?

... We have to add syntax :(

• '(1 . 2)
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When you what to quote, but only kinda.

• If you use ` it works a lot like '

`(a b c) == (list `a `b `c)

• In fact, there is only one difference

` works exactly like quote, unless it

encounters a ,

`,e == e
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When you what to quote, but only kinda.

• If you use ` it works a lot like '

`(a b c) == (list `a `b `c)

• In fact, there is only one difference

` works exactly like quote, unless it

encounters a ,

`,e == e

• These are known as  quasiquote and unquote,
respectively.
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• What result should this give us?

430> `(+ 1 ,(+ 1 1))
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• What about this?

430> `(+ 1 ,(+ 1 1) 1)
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Flipping the bit on binary trees
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Flipping the bit on binary trees

• We showed how to do binary trees with structs
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Flipping the bit on binary trees

• We showed how to do binary trees with structs

• Another pattern in Racket is to encode ADTs as
s-expressions (all the things you can
quote/unquote)

430> 'leaf
'(node 3 leaf leaf)
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Flipping the bit on binary trees

• We showed how to do binary trees with structs

• Another pattern in Racket is to encode ADTs as
s-expressions (all the things you can
quote/unquote)

430> 'leaf
'(node 3 leaf leaf)

• Note that leaf and node are just symbols!
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Let’s study this code together
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Let’s study this code together

(define (bt-height bt)
  (match bt
  [`leaf 0]
  [`(node ,_ ,left ,right)

(+ 1 (max (bt-height left)
(bt-height right)))]))
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To catch them is my real test.

430> (require rackunit)
(check-equal? (* 2 3) 7)
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Some final thoughts
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Some final thoughts

• Read the lecture notes!

192



Some final thoughts

• Read the lecture notes!

There is material on testing racket code, and
how to define and import modules
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