




Location
Location support classes
Maps
Map support classes



Mobile applications can benefit from being 
location-aware
Allows applications to determine their location and 
modify their behavior



Find stores near the user’s current location
Direct a user from a current to a particular store
Define a geofence
Initiate action when user enters or exits the 
geofence



Location
LocationProvider
LocationManager
LocationListener



Represents a position on the Earth
A Location instance consists of:

Latitude, longitude, timestamp and, optionally, accuracy, 
altitude, speed, and bearing



Represents a location data source
Actual data may come from 

GPS satellites

Cell phone towers

WiFi access points



Network – WiFi and cell tower
GPS - Satellite
Passive – Piggyback on the readings requested 
by other applications



Determines location based on cell tower and WiFi
access points
Requires either 

android.permission.ACCESS_COARSE_LOCATION

android.permission.ACCESS_FINE_LOCATION



Determines location using satellites 
Requires 

android.permission.ACCESS_FINE_LOCATION



Returns locations generated by other providers
Requires

android.permission.ACCESS_FINE_LOCATION



Different LocationProviders offer different tradeoffs 
between cost, accuracy, availability & timeliness



GPS – expensive, accurate, slower, available 
outdoors
Network - cheaper, less accurate, faster, 
availability varies
Passive – cheapest, fastest, not always available



System service for accessing location data
getSystemService(Context.LOCATION_SERVICE)



Determine the last known user location
Register for location updates 
Register to receive Intents when the device nears 
or moves away from a given geographic area



Defines callback methods that are called when 
Location or LocationProvider status changes



void onLocationChanged (Location location)
void onProviderDisabled (String provider)
void onProviderEnabled (String provider)
void onStatusChanged (String provider, 

int status, 
Bundle extras)



Start listening for updates from LocationProviders
Maintain a "current best estimate" of location
When estimate is “good enough”, stop listening for 
location updates
Use best location estimate



Several factors to consider
Measurement time

Accuracy

Power usage



Application acquires and displays the last known 
locations from all providers
If necessary, acquires and displays new readings 
from all providers



Location
Get Location





The same as LocationGetLocation, but uses 
newer FusedLocationProvider class

Uses Google Play Services 



Always check last known measurement
Return updates as infrequently as possible
Limit measurement time
Use the least accurate measurement necessary
Turn off updates in onPause()



A visual representation of area
Android provides Mapping support through the 
Google Maps Android v2 API



Normal – Traditional road map
Satellite – Aerial photograph
Hybrid – Satellite + road map
Terrain – Topographic details



Change the camera position
Add Markers & ground overlays
Respond to gestures
Indicate the user’s current Location



GoogleMap
MapFragment
Camera
Marker



Set up the Google Play services SDK
Obtain an API key
Specify settings in Application Manifest
Add map to project

See: https://developers.google.com/maps
/documentation/android/start



<uses-permission android:name=
"android.permission.INTERNET"/>

<uses-permission android:name= 
"android.permission.ACCESS_NETWORK_STATE"/>



<uses-permission android:name= 
"android.permission.WRITE_EXTERNAL_STORAGE"/>

<uses-permission android:name=
"com.google.android.providers.

gsf.permission.READ_GSERVICES"/>



<uses-permission android:name=
"android.permission.ACCESS_COARSE_LOCATION"/>

<uses-permission android:name=
"android.permission.ACCESS_FINE_LOCATION"/>



This application acquires earthquake data from a 
server
Then it displays the data on a map, using clickable 
markers



MapEarth
QuakeMap



// Set up UI and get earthquake data
public override fun onCreate(savedInstanceState: Bundle?) {
…
// The GoogleMap instance underlying the GoogleMapFragment defined 
// in main.xml
val map = supportFragmentManager.findFragmentById(R.id.map) 

as SupportMapFragment?
map?.getMapAsync(this)

}



// Called when Map is ready
override fun onMapReady(googleMap: GoogleMap) {

mMapReady = true
mMap = googleMap
mMap!!.moveCamera(CameraUpdateFactory.newLatLng(

LatLng(CAMERA_LAT,CAMERA_LNG)))
if (mDataReady) {

placeMarkers()
mMapReady = false

}
}



// Called when data is downloaded
override fun onDownloadfinished() {

mDataReady = true
if (mMapReady) {

placeMarkers()
mDataReady = false

}
}



private fun placeMarkers() { // Add a marker for every earthquake
for (rec in mRetainedFragment?.data!!) {

// Add a new marker for this earthquake
mMap!!.addMarker(MarkerOptions() 
// Set the Marker's position

.position(LatLng(rec.lat,rec.lng))
// Set the title of the Marker's information window

.title(rec.magnitude.toString())
// Set the color for the Marker
.icon(BitmapDescriptorFactory.defaultMarker(

getMarkerColor(rec.magnitude))))
}

}



The ContentProvider Class



LocationGetLocation
LocationGetLocationServices
MapEarthQuakeMap


