
Lecture 24: Other Parallel Applications
Abhinav Bhatele, Department of Computer Science

Introduction to Parallel Computing (CMSC498X / CMSC818X)



Abhinav Bhatele (CMSC498X/CMSC818X) LIVE RECORDING

Announcements

• Quiz 3 will be posted on Dec 2 midnight AoE and due on Dec 3 midnight AoE

• Check your presentation slot on the lectures page

• All group members must be present

• Be prepared to have your camera on when you are presenting

• Final project and report due on Dec 14

2



Abhinav Bhatele (CMSC498X/CMSC818X) LIVE RECORDING

Presentation and Final report format

• Upload pdf slides on ELMS after your presentation

• Introduce your project so that it is understandable by a CS audience

• Present what you are implementing or evaluating (serial / parallel algorithms)

• Progress so far

• Results (performance / performance analysis)

• Final report

• Upload code and pdf report to ELMS

• E-mail Abhinav and Shoken how you are distributing your virtual dollars (100) among your teammates with 
justification

3



Abhinav Bhatele (CMSC498X/CMSC818X) LIVE RECORDING

1.47 million people have died of COVID-19 this 
year alone

4



Abhinav Bhatele (CMSC498X/CMSC818X) LIVE RECORDING

Societal challenge

• Controlling the spread of infectious diseases is important

• Computational and mathematical modeling of epidemics important to assist 
governments in responding to outbreaks

• Made challenging due to:

• increased and denser urbanization

• increased local and global travel

• increasingly immuno-comprised population

5



Abhinav Bhatele (CMSC498X/CMSC818X) LIVE RECORDING

Approach: individual-based simulation

• Agent-based modeling to simulate epidemic diffusion

• Models agents (people) and interactions between them

• People interact when they visit the same location at the same time

• These “interactions” between pairs of people are represented as “visits” to locations

• Use a bi-partite graph of people and locations or a people-people interactivity graph

6



Abhinav Bhatele (CMSC498X/CMSC818X) LIVE RECORDING

Serial algorithm

• At each timestep (typically a day):

• Determine which people visit which locations

• “Send” people to those locations

• At each location “interactions” happen and transmission happens

• Update people’s states at the end of the day and continue

• Interventions (vaccinations, school closures) can be added on certain days to change 
people’s susceptibility, movements etc.

7



Abhinav Bhatele (CMSC498X/CMSC818X) LIVE RECORDING

Parallel simulation

8



Abhinav Bhatele (CMSC498X/CMSC818X) LIVE RECORDING

Parallel simulation is challenging

• Size and scale of the social contact network (6 billion agents for a global simulation)

• Unstructured networks and complicated dependencies lead to high communication cost

• Individuals and their behaviors are not identical

• Co-evolving epidemics, public policies and agent behaviors make it impossible to 
apply standard model reduction techniques

9



Abhinav Bhatele (CMSC498X/CMSC818X) LIVE RECORDING

Deep learning

• Uses artificial neural networks (ANNs) to approximate a function 

10



Abhinav Bhatele (CMSC498X/CMSC818X) LIVE RECORDING

Deep learning

• Uses artificial neural networks (ANNs) to approximate a function 

10

3.1 Deep Learning

Deep learning is a family of machine learning algorithms characterized by the usage of artificial neural
networks (ANNs) as function approximators. As the name suggests, ANNs are inspired by the functioning
of the human brain. The last decade has seen ANNs applied very widely in a variety of fields like computer
vision, natural language processing, bioinformatics, drug design, speech and audio recognition with results
often surpassing the state of the art and in some cases even human expert performance. While, neural
network architectures and training algorithms have existed for decades, it was only in the last few years that
deep learning has rose to prominence, primarily due to the following reasons: (1) increased computational
power via GPGPU hardware accelerators, and (2) availability of large amounts of data.

Artificial Neural Networks ANNs are parameterized function approximation algorithms, and are inspired
by biological neural networks. An ANN is a collection of artificial or simulated neurons (Figure 1 (left)),
each of which is a node in a directed, weighted graph. Each link has a weight which represents the strength
of one node’s influence over another. All of these weights taken together are the parameters of the neural
network. Thus, the words weights and parameters can be used interchangeably. Neural networks learn by
processing known inputs and outputs, and adjusting weight associations between the two to reduce error.
The activation of each neuron is the weighted sum of its inputs from neighboring neurons weighted by the
link weights followed by a non-linear function like sigmoid. The initial input is external data and output
accomplishes the designated task such as prediction.

x1

x2

xm-1

xm

w1

w2

wm-1

wm

Σ

Σ wi * xi + bias

Inputs Weights
Summation

and bias

fa y

Activation
function Outputs

Input
Layer Hidden Layers

Output
Layer

Figure 1: A single neuron (left) and an example artificial neural network (right).

Layer In deep learning, neurons are typically organized into layers. A layer computes a parameterized
non-linear transform of it’s input. Often, the layers are connected in a straight-chain with the ith layer op-
erating on the output of the (i � 1)th layer and the first layer operating on the input dataset. The “deep”
in deep learning stems from the usage of multiple layers essentially increasing the depth of the neural net-
work. Figure 1 (right) shows how neurons organized into different layers are connected to each other. It is
through the use of multiple layers that neural networks are able to learn very useful feature representations
of the input automatically [44].

Learning/Training and Loss Learning or Training is defined as the task of selecting the weight values
which can accurately compute the function that the neural network has to approximate. This is done by
posing the problem as a parameterized optimization of a scalar proxy called the loss. The loss is designed
in a way such that minimizing it leads to accurate function approximation.

Backpropagation Backpropagation is the algorithm by which the gradients/derivatives of the loss w.r.t. the
weights are calculated. Gradients are calculated in the reverse topological order starting from the final layer,
i.e. if layer i consumed the output of layer j, then layer i’s weight gradients are calculated first and used in
the calculation of layer j’s weight gradients. This backward flow of gradients in the layers lends the name
backpropagation to this process.

3



Abhinav Bhatele (CMSC498X/CMSC818X) LIVE RECORDING

Deep learning

• Uses artificial neural networks (ANNs) to approximate a function 

10

3.1 Deep Learning

Deep learning is a family of machine learning algorithms characterized by the usage of artificial neural
networks (ANNs) as function approximators. As the name suggests, ANNs are inspired by the functioning
of the human brain. The last decade has seen ANNs applied very widely in a variety of fields like computer
vision, natural language processing, bioinformatics, drug design, speech and audio recognition with results
often surpassing the state of the art and in some cases even human expert performance. While, neural
network architectures and training algorithms have existed for decades, it was only in the last few years that
deep learning has rose to prominence, primarily due to the following reasons: (1) increased computational
power via GPGPU hardware accelerators, and (2) availability of large amounts of data.

Artificial Neural Networks ANNs are parameterized function approximation algorithms, and are inspired
by biological neural networks. An ANN is a collection of artificial or simulated neurons (Figure 1 (left)),
each of which is a node in a directed, weighted graph. Each link has a weight which represents the strength
of one node’s influence over another. All of these weights taken together are the parameters of the neural
network. Thus, the words weights and parameters can be used interchangeably. Neural networks learn by
processing known inputs and outputs, and adjusting weight associations between the two to reduce error.
The activation of each neuron is the weighted sum of its inputs from neighboring neurons weighted by the
link weights followed by a non-linear function like sigmoid. The initial input is external data and output
accomplishes the designated task such as prediction.

x1

x2

xm-1

xm

w1

w2

wm-1

wm

Σ

Σ wi * xi + bias

Inputs Weights
Summation

and bias

fa y

Activation
function Outputs

Input
Layer Hidden Layers

Output
Layer

Figure 1: A single neuron (left) and an example artificial neural network (right).

Layer In deep learning, neurons are typically organized into layers. A layer computes a parameterized
non-linear transform of it’s input. Often, the layers are connected in a straight-chain with the ith layer op-
erating on the output of the (i � 1)th layer and the first layer operating on the input dataset. The “deep”
in deep learning stems from the usage of multiple layers essentially increasing the depth of the neural net-
work. Figure 1 (right) shows how neurons organized into different layers are connected to each other. It is
through the use of multiple layers that neural networks are able to learn very useful feature representations
of the input automatically [44].

Learning/Training and Loss Learning or Training is defined as the task of selecting the weight values
which can accurately compute the function that the neural network has to approximate. This is done by
posing the problem as a parameterized optimization of a scalar proxy called the loss. The loss is designed
in a way such that minimizing it leads to accurate function approximation.

Backpropagation Backpropagation is the algorithm by which the gradients/derivatives of the loss w.r.t. the
weights are calculated. Gradients are calculated in the reverse topological order starting from the final layer,
i.e. if layer i consumed the output of layer j, then layer i’s weight gradients are calculated first and used in
the calculation of layer j’s weight gradients. This backward flow of gradients in the layers lends the name
backpropagation to this process.

3

3.1 Deep Learning

Deep learning is a family of machine learning algorithms characterized by the usage of artificial neural
networks (ANNs) as function approximators. As the name suggests, ANNs are inspired by the functioning
of the human brain. The last decade has seen ANNs applied very widely in a variety of fields like computer
vision, natural language processing, bioinformatics, drug design, speech and audio recognition with results
often surpassing the state of the art and in some cases even human expert performance. While, neural
network architectures and training algorithms have existed for decades, it was only in the last few years that
deep learning has rose to prominence, primarily due to the following reasons: (1) increased computational
power via GPGPU hardware accelerators, and (2) availability of large amounts of data.

Artificial Neural Networks ANNs are parameterized function approximation algorithms, and are inspired
by biological neural networks. An ANN is a collection of artificial or simulated neurons (Figure 1 (left)),
each of which is a node in a directed, weighted graph. Each link has a weight which represents the strength
of one node’s influence over another. All of these weights taken together are the parameters of the neural
network. Thus, the words weights and parameters can be used interchangeably. Neural networks learn by
processing known inputs and outputs, and adjusting weight associations between the two to reduce error.
The activation of each neuron is the weighted sum of its inputs from neighboring neurons weighted by the
link weights followed by a non-linear function like sigmoid. The initial input is external data and output
accomplishes the designated task such as prediction.

x1

x2

xm-1

xm

w1

w2

wm-1

wm

Σ

Σ wi * xi + bias

Inputs Weights
Summation

and bias

fa y

Activation
function Outputs

Input
Layer Hidden Layers

Output
Layer

Figure 1: A single neuron (left) and an example artificial neural network (right).

Layer In deep learning, neurons are typically organized into layers. A layer computes a parameterized
non-linear transform of it’s input. Often, the layers are connected in a straight-chain with the ith layer op-
erating on the output of the (i � 1)th layer and the first layer operating on the input dataset. The “deep”
in deep learning stems from the usage of multiple layers essentially increasing the depth of the neural net-
work. Figure 1 (right) shows how neurons organized into different layers are connected to each other. It is
through the use of multiple layers that neural networks are able to learn very useful feature representations
of the input automatically [44].

Learning/Training and Loss Learning or Training is defined as the task of selecting the weight values
which can accurately compute the function that the neural network has to approximate. This is done by
posing the problem as a parameterized optimization of a scalar proxy called the loss. The loss is designed
in a way such that minimizing it leads to accurate function approximation.

Backpropagation Backpropagation is the algorithm by which the gradients/derivatives of the loss w.r.t. the
weights are calculated. Gradients are calculated in the reverse topological order starting from the final layer,
i.e. if layer i consumed the output of layer j, then layer i’s weight gradients are calculated first and used in
the calculation of layer j’s weight gradients. This backward flow of gradients in the layers lends the name
backpropagation to this process.

3



Abhinav Bhatele (CMSC498X/CMSC818X) LIVE RECORDING

Additional terms

• Loss: A scalar whose minimization leads to more accurate function approximation

• Gradient: Derivative of the loss w.r.t. the gradient

• Forward pass: calculation of output activations

• Backward pass or backpropagation: calculation of and backward flow of weight 
gradients

11



Abhinav Bhatele (CMSC498X/CMSC818X) LIVE RECORDING

Serial algorithm (SGD)

• Stochastic Gradient Descent

• Organize dataset into mini-batches and process one mini-batch at a time

• Going over all the mini-batches is referred to as an epoch

• At each epoch:

• For all mini-batches

• Calculate activations and do a forward pass through all the layers

• Calculate the loss on the last layer

• Compute gradients and do a backward pass through all the layers

12



Abhinav Bhatele (CMSC498X/CMSC818X) LIVE RECORDING

Parallelism approaches

13



Abhinav Bhatele (CMSC498X/CMSC818X) LIVE RECORDING

Parallelism approaches

• Data Parallelism

13



Abhinav Bhatele (CMSC498X/CMSC818X) LIVE RECORDING

Parallelism approaches

• Data Parallelism

13

Gradient Descent, Epochs and Learning Rate Gradient Descent is the algorithm to find the optimal weights
for the neural network. Given the dataset as input, the neural network calculates the scalar valued loss func-
tion. Gradients w.r.t the weights are calculated via backpropagation as described in the previous section.
Weights are updated by subtracting from them the calculated gradient weighted by a positive scalar called
the learning rate. This update ensures that the loss function is iteratively minimized with each update.

Mini-Batches, Epochs and Stochastic Gradient Descent Using backpropagation to calculate weight gra-
dients with the entire dataset as input can be expensive for large datasets. Hence, typically mutually exclu-
sive and exhaustive subsets of the dataset are used iteratively for faster and more frequent weight updates.
These subsets are called mini-batches and their cardinality is called the mini-batch-size. Since, a subset of
the dataset is used to approximate the gradient the process is called stochastic gradient descent (SGD). An
entire training iteration over the dataset by exhausting all the mini-batches is called an epoch.

Forward and Backward Pass A forward pass of a layer is the computation of its output activation from it’s
input. Conversely, a backward pass of a layer is the computation of the weight gradients via backpropaga-
tion from the gradients of the output activation.

3.2 Distributed Deep Learning

Due to the compute-heavy nature of neural networks, advancements in deep learning are tightly cou-
pled with those in high performance computing. The state-of-the-art in deep learning is gravitating towards
neural networks with extremely large computational and memory requirements[17, 26, 48, 53]. Training
these networks on a single GPU is gradually becoming an intractable task. This is why researchers have
been increasingly looking towards harnessing the collective power of a multi-GPU setup to accelerate neu-
ral network training. Distributed deep learning deals with the design and analysis of algorithms for training
neural networks on such multi-GPU machines. Parallel algorithms in this area can be grouped into three
categories: data parallelism, layer parallelism, and model parallelism via pipelining.

Data Parallelism Mini-batches in SGD are processed independently. Data parallelism exploits this prop-
erty by dividing the mini-batches evenly across multiple GPUs and processing them concurrently. Figure 2
shows data parallelism in action. Each GPU in such a setting typically possesses a synchronized copy of
the neural network and it’s weights. The calculation of the scalar loss and backpropagation executes in-
dependently on each GPU. However, the gradients calculated across all the GPUs operating on different
mini-batches have to be averaged-out via a collective all-reduce operation. This is done to maintain a syn-
chronous copy of weights across GPUs with updates from all mini-batches in the dataset. Being very easy
to implement, data parallelism is widely available in common deep learning frameworks like PyTorch [36].
PyTorch implements the optimized Wait-Free Backpropagation (WFBP) algorithm [65] which overlaps the
all-reduce collective communication with the calculation of layer gradients. Further, due to the even divi-
sion of work across GPUs, it is perfectly load balanced by design.

1GPU 0

GPU 1

GPU 2

GPU 3

1 1 1

Data Parallelism

1 1 1 1

2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 4

5 5 5 5 5

6 6 6 6 6

7 7 7 7 7

8 8 8 8 8

Layer 1 Forward Pass

Layer 2 Forward Pass

Layer 3 Forward Pass

Layer 4 Forward Pass

Layer 1 Backward Pass

Layer 2 Backward Pass

Layer 3 Backward Pass

Layer 4 Backward Pass

Communication

Time

Figure 2: Data parallel approach to distributed deep learning. Each GPU has a copy of the entire model

and it computes on different mini-batches.

Layer Parallelism Layer parallelism refers to parallelizing the work of a layer by dividing it’s neurons
across GPUs. Each GPU processes different portions of the output of the layer while working on the same

4



Abhinav Bhatele (CMSC498X/CMSC818X) LIVE RECORDING

Parallelism approaches

14



Abhinav Bhatele (CMSC498X/CMSC818X) LIVE RECORDING

Parallelism approaches

• Model Parallelism

14



Abhinav Bhatele (CMSC498X/CMSC818X) LIVE RECORDING

Parallelism approaches

• Model Parallelism

14



Abhinav Bhatele (CMSC498X/CMSC818X) LIVE RECORDING

Parallelism approaches

15



Abhinav Bhatele (CMSC498X/CMSC818X) LIVE RECORDING

Parallelism approaches

• Pipeline Parallelism

15



Abhinav Bhatele (CMSC498X/CMSC818X) LIVE RECORDING

Parallelism approaches

• Pipeline Parallelism

15

input. Work in this area has focused on optimizing the execution of different kinds of layers - Fully Con-
nected [21], Convolutional [16] and more recently the Transformer [52, 59]. Communication in layer paral-
lelism is cheap as it is limited to the subset of GPUs implementing the layer. It has shown great promise in
speeding up the execution of the Transformer architecture [52] - which is the backbone of several state-of-
the-art neural networks in natural language processing like BERT [17] and GPT-2 [48].

Model Parallelism via Pipelining In model parallelism, contiguous subsets of layers are mapped to indi-
vidual GPUs. Each GPU is thus tasked with operating a subset of the neural network. Exchange of data
among layers with input-output dependencies takes place via point-to-point communication primitives. To
achieve true parallelism, more then one mini-batch should be active on different GPUs at a time since the
processing of a mini-batch across layers is sequential and can’t be parallelized. This is called pipelining.
The number of mini-batches active in the system at a given point is called the pipeline limit. Figure 3 shows
model parallelism via pipelining in action with four GPUs and a pipeline limit of four. Due to the commu-
nication being point-to-point it is much cheaper as compared to collective communication required by data
parallelism. Model parallelism is also able to train neural networks that might not fit into the GPU DRAM
as each GPU only operates on a subset of the network.

1GPU 0

GPU 1

GPU 2

GPU 3

1

1 1

2

2

2 2

3

3

4

4

Model Parallelism with Pipelining

1 1

1

1

2 2

2

2

3 3

3

3

4 4

4

45

5

5 5 5

6

6

6 6 6

7

7

8

8

3 3 4 4 5 6

5

5
Layer 1 Forward Pass

Layer 2 Forward Pass

Layer 3 Forward Pass

Layer 4 Forward Pass

Layer 1 Backward Pass

Layer 2 Backward Pass

Layer 3 Backward Pass

Layer 4 Backward Pass

Communication

Time

Figure 3: Model parallel approach to distributed deep learning. In model parallelism with pipelining,

layers in the network are distributed to different GPUs. In this figure, layer 2 (in red) is replicated

on GPUs 1 and 2, whereas layers 3 (in purple) and 4 (in yellow) are both on GPU 3. Grey represents

collective communication.

3.3 Limitations of Prior Work

Data Parallelism Recent work [40] has shown that the all-reduce collective communication in data paral-
lelism doesn’t scale efficiently with increasing number of GPUs. The authors of [40] empirically show that
the communication stalls in data parallelism can account for almost 90 percent of the total training time for
some commonly used large neural network architectures [34, 53, 62] on 32 GPUs. Another severe limitation
is that it cannot be used to train neural networks with memory requirements larger than the available GPU
DRAM. Although Rajbhandari et al. [49] show a promising approach to circumvent the preceding deficit,
the proposed memory optimizations are very specific to the transformer neural network only.

Layer Parallelism The major problem of layer parallelism is limited applicability. Neural Networks in
Computer Vision like the Resnet[26] focus on having large number of layers instead of having large number
of neurons in each layer. This makes them less suitable for layer parallelization. The other problem is
difficulty of programming, with major frameworks like PyTorch not offering an API for layer parallelism
for typical layer types.

Model Parallelism via Pipelining While having lesser communication overhead than data parallelism,
model parallelism via pipelining is very susceptible to load imbalance. Layers in typical neural networks
are heterogeneous which makes load balancing a non trivial problem. Major research in this area (Rajb-
handari et al. [49] and Huang et al. [27]) has often left the task of providing a load balanced assignment of
layers to the user. Narayanan et al. [40] provide a static dynamic programming based solution that relies on
profiling the layers of a neural network. Apart from the obvious limitation of being static, their approach
is only applicable to homogeneous GPU machines. We have also observed empirically that their load
balancing algorithm isn’t robust enough to handle memory-constrained environments. Another problem
is the use of sub-optimal communication algorithms for training. Both Narayanan et al. [40] and Rajb-

5



Abhinav Bhatele (CMSC498X/CMSC818X) LIVE RECORDING

Course evaluation

16



Abhinav Bhatele 

5218 Brendan Iribe Center (IRB) / College Park, MD 20742 

phone: 301.405.4507 / e-mail: bhatele@cs.umd.edu


