Introduction to Parallel Computing (CMSC498X / CMSC818X)

Lecture 24: Other Parallel Applications

Abhinav Bhatele, Department of Computer Science

Announcements

- Quiz 3 will be posted on Dec 2 midnight AoE and due on Dec 3 midnight AoE
- Check your presentation slot on the lectures page
 - All group members must be present
 - Be prepared to have your camera on when you are presenting
- Final project and report due on Dec 14

Abhinav Bhatele (CMSC498X/CMSC818X)

Presentation and Final report format

- Upload pdf slides on ELMS after your presentation
 - Introduce your project so that it is understandable by a CS audience
 - Present what you are implementing or evaluating (serial / parallel algorithms)
 - Progress so far
 - Results (performance / performance analysis)
- Final report
 - Upload code and pdf report to ELMS
 - justification

E-mail Abhinav and Shoken how you are distributing your virtual dollars (100) among your teammates with

Abhinav Bhatele (CMSC498X/CMSC818X)

1.47 million people have died of COVID-19 this year alone

Cases				
Total Worldwide				
Cases	Recovered	Deaths		
63.3M	40.6M	1.47M		
Location		Cases↓	Recovered	
United States		13.6M	-	
		+168K		
India		9.46M	-	
		+38,772		
📀 Brazil		6.34M	5.6M	
		+21,138		
E Russia		2.32M	1.8M	
		+26,338		
France		2.22M	162K	
		+4,005		

Abhinav Bhatele (CMSC498X/CMSC818X)

LIVE RECORDING

4

Societal challenge

- Controlling the spread of infectious diseases is important
- Computational and mathematical modeling of epidemics important to assist governments in responding to outbreaks
- Made challenging due to:
 - increased and denser urbanization
 - increased local and global travel
 - increasingly immuno-comprised population

Abhinav Bhatele (CMSC498X/CMSC818X)

Approach: individual-based simulation

- Agent-based modeling to simulate epidemic diffusion
- Models agents (people) and interactions between them
- People interact when they visit the same location at the same time
- These "interactions" between pairs of people are represented as "visits" to locations
- Use a bi-partite graph of people and locations or a people-people interactivity graph

Abhinav Bhatele (CMSC498X/CMSC818X)

Serial algorithm

- At each timestep (typically a day):
 - Determine which people visit which locations
 - "Send" people to those locations
 - At each location "interactions" happen and transmission happens
 - Update people's states at the end of the day and continue
- people's susceptibility, movements etc.

• Interventions (vaccinations, school closures) can be added on certain days to change

Abhinav Bhatele (CMSC498X/CMSC818X)

Parallel simulation

Abhinav Bhatele (CMSC498X/CMSC818X)

Parallel simulation is challenging

- Size and scale of the social contact network (6 billion agents for a global simulation)
 - Unstructured networks and complicated dependencies lead to high communication cost
- Individuals and their behaviors are not identical
- Co-evolving epidemics, public policies and agent behaviors make it impossible to apply standard model reduction techniques

Abhinav Bhatele (CMSC498X/CMSC818X)

Deep learning

Uses artificial neural networks (ANNs) to approximate a function

Abhinav Bhatele (CMSC498X/CMSC818X)

Deep learning

Uses artificial neural networks (ANNs) to approximate a function

Abhinav Bhatele (CMSC498X/CMSC818X)

Deep learning

Uses artificial neural networks (ANNs) to approximate a function

Abhinav Bhatele (CMSC498X/CMSC818X)

Additional terms

- Loss: A scalar whose minimization leads to more accurate function approximation
- Gradient: Derivative of the loss w.r.t. the gradient
- Forward pass: calculation of output activations
- Backward pass or backpropagation: calculation of and backward flow of weight gradients

Abhinav Bhatele (CMSC498X/CMSC818X)

Serial algorithm (SGD)

- Stochastic Gradient Descent
- Organize dataset into mini-batches and process one mini-batch at a time
- Going over all the mini-batches is referred to as an epoch
- At each epoch:
 - For all mini-batches
 - Calculate activations and do a forward pass through all the layers
 - Calculate the loss on the last layer
 - Compute gradients and do a backward pass through all the layers

Abhinav Bhatele (CMSC498X/CMSC818X)

Abhinav Bhatele (CMSC498X/CMSC818X)

• Data Parallelism

Abhinav Bhatele (CMSC498X/CMSC818X)

Data Parallelism

Time

- Layer I Forward Pass
- Layer 2 Forward Pass
- Layer 3 Forward Pass
- Layer 4 Forward Pass
 - Communication

- Layer I Backward Pass Layer 2 Backward Pass Layer 3 Backward Pass
- Layer 4 Backward Pass

Abhinav Bhatele (CMSC498X/CMSC818X)

• Model Parallelism

Abhinav Bhatele (CMSC498X/CMSC818X)

Abhinav Bhatele (CMSC498X/CMSC818X)

• Pipeline Parallelism

Abhinav Bhatele (CMSC498X/CMSC818X)

Time

Course evaluation

Abhinav Bhatele (CMSC498X/CMSC818X)

UNIVERSITY OF MARYLAND

Abhinav Bhatele 5218 Brendan Iribe Center (IRB) / College Park, MD 20742 phone: 301.405.4507 / e-mail: bhatele@cs.umd.edu

