(** * Smallstep: Small-step Operational Semantics *) Set Warnings "-notation-overridden,-parsing". From Coq Require Import Arith.Arith. From Coq Require Import Arith.EqNat. From Coq Require Import Init.Nat. From Coq Require Import Lia. From Coq Require Import Lists.List. Import ListNotations. From PLF Require Import Maps. From PLF Require Import Imp. (* ================================================================= *) (** ** Big-step Evaluation Our semantics for Imp is written in the so-called "big-step" style... Evaluation rules take an expression (or command) to a final answer "all in one step": 2 + 2 + 3 * 4 ==> 16 Similarly, Hoare logic uses big-step semantics to talk about the relationship between the starting and final state (if any) of a program. But big-step semantics makes it hard to talk about what happens _along the way_... *) (* ================================================================= *) (** ** Small-step Evaluation _Small-step_ style: Show how to "reduce" an expression by performing a single step of computation: 2 + 2 + 3 * 4 --> 2 + 2 + 12 --> 4 + 12 --> 16 Advantages of the small-step style include: - Finer-grained "abstract machine" is closer to real implementations - Extends smoothly to concurrent languages and languages with other sorts of _computational effects_. - Separates _divergence_ (nontermination) from _stuckness_ (run-time error) *) (* ################################################################# *) (** * A Toy Language *) (** The world's simplest programming language: *) Inductive tm : Type := | C : nat -> tm (* Constant *) | P : tm -> tm -> tm. (* Plus *) (* ----------------------------------------------------------------- *) (** *** Big-step evaluation as a function *) Fixpoint evalF (t : tm) : nat := match t with | C n => n | P t1 t2 => evalF t1 + evalF t2 end. (* ----------------------------------------------------------------- *) (** *** Big-step evaluation as a relation --------- (E_Const) C n ==> n t1 ==> n1 t2 ==> n2 ------------------- (E_Plus) P t1 t2 ==> n1 + n2 *) Reserved Notation " t '==>' n " (at level 50, left associativity). Inductive eval : tm -> nat -> Prop := | E_Const : forall n, C n ==> n | E_Plus : forall t1 t2 n1 n2, t1 ==> n1 -> t2 ==> n2 -> P t1 t2 ==> (n1 + n2) where " t '==>' n " := (eval t n). Module SimpleArith1. (* ----------------------------------------------------------------- *) (** *** Small-step evaluation relation ------------------------------- (ST_PlusConstConst) P (C n1) (C n2) --> C (n1 + n2) t1 --> t1' -------------------- (ST_Plus1) P t1 t2 --> P t1' t2 t2 --> t2' ---------------------------- (ST_Plus2) P (C n1) t2 --> P (C n1) t2' *) (** Notice: - each step reduces the _leftmost_ [P] node that is ready to go - first rule tells how to rewrite this node - second and third rules tell where to find it - constants are not related to anything (i.e., they do not step to anything) *) (* ----------------------------------------------------------------- *) (** *** Small-step evaluation in Coq *) Reserved Notation " t '-->' t' " (at level 40). Inductive step : tm -> tm -> Prop := | ST_PlusConstConst : forall n1 n2, P (C n1) (C n2) --> C (n1 + n2) | ST_Plus1 : forall t1 t1' t2, t1 --> t1' -> P t1 t2 --> P t1' t2 | ST_Plus2 : forall n1 t2 t2', t2 --> t2' -> P (C n1) t2 --> P (C n1) t2' where " t '-->' t' " := (step t t'). (* ----------------------------------------------------------------- *) (** *** Examples *) (** If [t1] can take a step to [t1'], then [P t1 t2] steps to [P t1' t2]: *) Example test_step_1 : P (P (C 1) (C 3)) (P (C 2) (C 4)) --> P (C 4) (P (C 2) (C 4)). Proof. apply ST_Plus1. apply ST_PlusConstConst. Qed. (* QUIZ What does the following term step to? P (P (C 1) (C 2)) (P (C 1) (C 2)) (1) [C 6] (2) [P (C 3) (P (C 1) (C 2))] (3) [P (P (C 1) (C 2)) (C 3)] (4) [P (C 3) (C 3)] (5) None of the above _________________________________________________ Inductive step : tm -> tm -> Prop := | ST_PlusConstConst : forall n1 n2, P (C n1) (C n2) --> C (n1 + n2) | ST_Plus1 : forall t1 t1' t2, t1 --> t1' -> P t1 t2 --> P t1' t2 | ST_Plus2 : forall n1 t2 t2', t2 --> t2' -> P (C n1) t2 --> P (C n1) t2' *) (* QUIZ What about this one? C 1 (1) [C 1] (2) [P (C 0) (C 1)] (3) None of the above _________________________________________________ Inductive step : tm -> tm -> Prop := | ST_PlusConstConst : forall n1 n2, P (C n1) (C n2) --> C (n1 + n2) | ST_Plus1 : forall t1 t1' t2, t1 --> t1' -> P t1 t2 --> P t1' t2 | ST_Plus2 : forall n1 t2 t2', t2 --> t2' -> P (C n1) t2 --> P (C n1) t2' *) End SimpleArith1. (* ################################################################# *) (** * Relations *) (** We will be working with several different single-step relations, so it is helpful to generalize a bit and state a few definitions and theorems about relations in general. (The optional chapter [Rel.v] develops some of these ideas in a bit more detail; it may be useful if the treatment here is too dense.) A _binary relation_ on a set [X] is a family of propositions parameterized by two elements of [X] -- i.e., a proposition about pairs of elements of [X]. *) Definition relation (X : Type) := X -> X -> Prop. (** The step relation [-->] is an example of a relation on [tm]. *) (* ----------------------------------------------------------------- *) (** *** Determinism *) (** One simple property of the [-->] relation is that, like the big-step evaluation relation for Imp, it is _deterministic_. _Theorem_: For each [t], there is at most one [t'] such that [t] steps to [t'] ([t --> t'] is provable). *) (** Formally: *) Definition deterministic {X : Type} (R : relation X) := forall x y1 y2 : X, R x y1 -> R x y2 -> y1 = y2. Module SimpleArith2. Import SimpleArith1. Theorem step_deterministic: deterministic step. Proof. unfold deterministic. intros x y1 y2 Hy1 Hy2. generalize dependent y2. induction Hy1; intros y2 Hy2. - (* ST_PlusConstConst *) inversion Hy2; subst. + (* ST_PlusConstConst *) reflexivity. + (* ST_Plus1 *) inversion H2. + (* ST_Plus2 *) inversion H2. - (* ST_Plus1 *) inversion Hy2; subst. + (* ST_PlusConstConst *) inversion Hy1. + (* ST_Plus1 *) rewrite <- (IHHy1 t1'0). reflexivity. assumption. + (* ST_Plus2 *) inversion Hy1. - (* ST_Plus2 *) inversion Hy2; subst. + (* ST_PlusConstConst *) inversion Hy1. + (* ST_Plus1 *) inversion H2. + (* ST_Plus2 *) rewrite <- (IHHy1 t2'0). reflexivity. assumption. Qed. End SimpleArith2. (** Let's define a little tactic to decrease annoying repetition in this proof: *) Ltac solve_by_inverts n := match goal with | H : ?T |- _ => match type of T with Prop => solve [ inversion H; match n with S (S (?n')) => subst; solve_by_inverts (S n') end ] end end. Ltac solve_by_invert := solve_by_inverts 1. (** The proof of the previous theorem can now be simplified... *) Module SimpleArith3. Import SimpleArith1. Theorem step_deterministic_alt: deterministic step. Proof. intros x y1 y2 Hy1 Hy2. generalize dependent y2. induction Hy1; intros y2 Hy2; inversion Hy2; subst; try solve_by_invert. - (* ST_PlusConstConst *) reflexivity. - (* ST_Plus1 *) apply IHHy1 in H2. rewrite H2. reflexivity. - (* ST_Plus2 *) apply IHHy1 in H2. rewrite H2. reflexivity. Qed. End SimpleArith3. (* ================================================================= *) (** ** Values *) (** It can be useful to think of the [-->] relation as defining an _abstract machine_: - At any moment, the _state_ of the machine is a term. - A _step_ of the machine is an atomic unit of computation -- here, a single "add" operation. - The _halting states_ of the machine are ones where there is no more computation to be done. We can then execute a term [t] as follows: - Take [t] as the starting state of the machine. - Repeatedly use the [-->] relation to find a sequence of machine states, starting with [t], where each state steps to the next. - When no more reduction is possible, "read out" the final state of the machine as the result of execution. *) (** Final states of the machine are terms of the form [C n] for some [n]. We call such terms _values_. *) Inductive value : tm -> Prop := | v_const : forall n, value (C n). (** This gives a more elegant way of writing the [ST_Plus2] rule: ------------------------------- (ST_PlusConstConst) P (C n1) (C n2) --> C (n1 + n2) t1 --> t1' -------------------- (ST_Plus1) P t1 t2 --> P t1' t2 value v1 t2 --> t2' -------------------- (ST_Plus2) P v1 t2 --> P v1 t2' *) (** Again, variable names carry important information: - [v1] ranges only over values - [t1] and [t2] range over arbitrary terms So the [value] hypothesis in the last rule is actually redundant in the informal presentation: The naming convention tells us where to add it when translating the informal rule to Coq. We'll keep it for now, but in later chapters we'll elide it. *) (** Here are the formal rules: *) Reserved Notation " t '-->' t' " (at level 40). Inductive step : tm -> tm -> Prop := | ST_PlusConstConst : forall n1 n2, P (C n1) (C n2) --> C (n1 + n2) | ST_Plus1 : forall t1 t1' t2, t1 --> t1' -> P t1 t2 --> P t1' t2 | ST_Plus2 : forall v1 t2 t2', value v1 -> (* <--- n.b. *) t2 --> t2' -> P v1 t2 --> P v1 t2' where " t '-->' t' " := (step t t'). (* ================================================================= *) (** ** Strong Progress and Normal Forms *) (** _Theorem_ (_Strong Progress_): If [t] is a term, then either [t] is a value or else there exists a term [t'] such that [t --> t']. *) Theorem strong_progress : forall t, value t \/ (exists t', t --> t'). Proof. induction t. - (* C *) left. apply v_const. - (* P *) right. destruct IHt1 as [IHt1 | [t1' Ht1] ]. + (* l *) destruct IHt2 as [IHt2 | [t2' Ht2] ]. * (* l *) inversion IHt1. inversion IHt2. exists (C (n + n0)). apply ST_PlusConstConst. * (* r *) exists (P t1 t2'). apply ST_Plus2. apply IHt1. apply Ht2. + (* r *) exists (P t1' t2). apply ST_Plus1. apply Ht1. Qed. (* ----------------------------------------------------------------- *) (** *** Normal forms *) (** The idea of "making progress" can be extended to tell us something interesting about values: they are exactly the terms that _cannot_ make progress in this sense. To state this observation formally, let's begin by giving a name to "terms that cannot make progress." We'll call them _normal forms_. *) Definition normal_form {X : Type} (R : relation X) (t : X) : Prop := ~ exists t', R t t'. (* ----------------------------------------------------------------- *) (** *** Values vs. normal forms (In this language) normal forms and values coincide: *) Lemma value_is_nf : forall v, value v -> normal_form step v. Proof. unfold normal_form. intros v H. destruct H. intros contra. destruct contra. inversion H. Qed. Lemma nf_is_value : forall t, normal_form step t -> value t. Proof. (* a corollary of [strong_progress]... *) unfold normal_form. intros t H. assert (G : value t \/ exists t', t --> t'). { apply strong_progress. } destruct G as [G | G]. - (* l *) apply G. - (* r *) exfalso. apply H. assumption. Qed. Corollary nf_same_as_value : forall t, normal_form step t <-> value t. Proof. split. apply nf_is_value. apply value_is_nf. Qed. (** Why is this interesting? Because [value] is a syntactic concept -- it is defined by looking at the way a term is written -- while [normal_form] is a semantic one -- it is defined by looking at how the term steps. It is not obvious that these concepts should define the same set of terms! *) (** Indeed, we could easily have written the definitions (incorrectly) so that they would _not_ coincide. *) (** We might, for example, define [value] so that it includes some terms that are not finished reducing. *) Module Temp1. Inductive value : tm -> Prop := | v_const : forall n, value (C n) | v_funny : forall t1 n2, value (P t1 (C n2)). (* <--- *) Reserved Notation " t '-->' t' " (at level 40). Inductive step : tm -> tm -> Prop := | ST_PlusConstConst : forall n1 n2, P (C n1) (C n2) --> C (n1 + n2) | ST_Plus1 : forall t1 t1' t2, t1 --> t1' -> P t1 t2 --> P t1' t2 | ST_Plus2 : forall v1 t2 t2', value v1 -> t2 --> t2' -> P v1 t2 --> P v1 t2' where " t '-->' t' " := (step t t'). (* QUIZ Using this wrong definition of [value], how many different values does the following term [step] to (in zero or more steps)? P (P (C 1) (C 2)) (C 3) ________________________________________ Inductive value : tm -> Prop := | v_const : forall n, value (C n) | v_funny : forall t1 n2, value (P t1 (C n2)). *) (* QUIZ How many different terms does the following term [step] to in one step? P (P (C 1) (C 2)) (P (C 3) (C 4)) ________________________________________ Inductive value : tm -> Prop := | v_const : forall n, value (C n) | v_funny : forall t1 n2, value (P t1 (C n2)). *) (** We obviously also lose the property that values are the same as normal forms: *) Lemma value_not_same_as_normal_form : exists v, value v /\ ~ normal_form step v. Proof. (* FILL IN HERE *) Admitted. End Temp1. (** Or we might (again, wrongly) define [step] so that it permits something designated as a value to reduce further. *) Module Temp2. Inductive value : tm -> Prop := | v_const : forall n, value (C n). (* Original definition *) Reserved Notation " t '-->' t' " (at level 40). Inductive step : tm -> tm -> Prop := | ST_Funny : forall n, C n --> P (C n) (C 0) (* <--- NEW *) | ST_PlusConstConst : forall n1 n2, P (C n1) (C n2) --> C (n1 + n2) | ST_Plus1 : forall t1 t1' t2, t1 --> t1' -> P t1 t2 --> P t1' t2 | ST_Plus2 : forall v1 t2 t2', value v1 -> t2 --> t2' -> P v1 t2 --> P v1 t2' where " t '-->' t' " := (step t t'). (* QUIZ How many different terms does the following term step to (in exactly one step)? P (C 1) (C 3) _______________________________________ Inductive step : tm -> tm -> Prop := | ST_Funny : forall n, C n --> P (C n) (C 0) | ST_PlusConstConst : forall n1 n2, P (C n1) (C n2) --> C (n1 + n2) | ST_Plus1 : forall t1 t1' t2, t1 --> t1' -> P t1 t2 --> P t1' t2 | ST_Plus2 : forall v1 t2 t2', value v1 -> t2 --> t2' -> P v1 t2 --> P v1 t2' *) (* /QUIZ And we again lose the property that values are the same as normal forms: *) Lemma value_not_same_as_normal_form : exists v, value v /\ ~ normal_form step v. Proof. (* FILL IN HERE *) Admitted. End Temp2. (** Finally, we might define [value] and [step] so that there is some term that is _not_ a value but that _also_ cannot take a step. Such terms are said to be _stuck_. *) Module Temp3. Inductive value : tm -> Prop := | v_const : forall n, value (C n). Reserved Notation " t '-->' t' " (at level 40). Inductive step : tm -> tm -> Prop := | ST_PlusConstConst : forall n1 n2, P (C n1) (C n2) --> C (n1 + n2) | ST_Plus1 : forall t1 t1' t2, t1 --> t1' -> P t1 t2 --> P t1' t2 where " t '-->' t' " := (step t t'). (** (Note that [ST_Plus2] is missing.) *) (* QUIZ How many terms does the following term step to (in one step)? P (C 1) (P (C 1) (C 2)) _________________________________________ Inductive step : tm -> tm -> Prop := | ST_PlusConstConst : forall n1 n2, P (C n1) (C n2) --> C (n1 + n2) | ST_Plus1 : forall t1 t1' t2, t1 --> t1' -> P t1 t2 --> P t1' t2 *) (** And, once again: *) Lemma value_not_same_as_normal_form : exists t, ~ value t /\ normal_form step t. Proof. (* FILL IN HERE *) Admitted. End Temp3. (* ################################################################# *) (** * Multi-Step Reduction *) (** We can now use the single-step relation and the concept of value to formalize an entire _execution_ of the abstract machine. First, we define a _multi-step reduction relation_ [-->*] to capture the intermediate results of a computation. *) (** Since we'll want to reuse the idea of multi-step reduction many times, let's pause and define it generically. Given a relation [R] (which will be [-->] for present purposes), we define a relation [multi R], called the _multi-step closure of [R]_ as follows. *) Inductive multi {X : Type} (R : relation X) : relation X := | multi_refl : forall (x : X), multi R x x | multi_step : forall (x y z : X), R x y -> multi R y z -> multi R x z. (** The effect of this definition is that [multi R] relates two elements [x] and [y] if - [x = y], or - [R x y], or - there is some nonempty sequence [z1], [z2], ..., [zn] such that R x z1 R z1 z2 ... R zn y. Thus, if [R] describes a single-step of computation, then [z1] ... [zn] is the sequence of intermediate steps of computation between [x] and [y]. *) (** We write [-->*] for the [multi step] relation on terms. *) Notation " t '-->*' t' " := (multi step t t') (at level 40). (** The relation [multi R] has several crucial properties. First, it is obviously _reflexive_ (that is, [forall x, multi R x x]). In the case of the [-->*] (i.e., [multi step]) relation, the intuition is that a term can execute to itself by taking zero steps of execution. *) (** Second, it contains [R] -- that is, single-step executions are a particular case of multi-step executions. (It is this fact that justifies the word "closure" in the term "multi-step closure of [R].") *) Theorem multi_R : forall (X : Type) (R : relation X) (x y : X), R x y -> (multi R) x y. Proof. intros X R x y H. apply multi_step with y. apply H. apply multi_refl. Qed. (** Third, [multi R] is _transitive_. *) Theorem multi_trans : forall (X : Type) (R : relation X) (x y z : X), multi R x y -> multi R y z -> multi R x z. Proof. intros X R x y z G H. induction G. - (* multi_refl *) assumption. - (* multi_step *) apply multi_step with y. assumption. apply IHG. assumption. Qed. (** In particular, for the [multi step] relation on terms, if [t1 -->* t2] and [t2 -->* t3], then [t1 -->* t3]. *) (* ================================================================= *) (** ** Examples *) (** Here's a specific instance of the [multi step] relation: *) Lemma test_multistep_1: P (P (C 0) (C 3)) (P (C 2) (C 4)) -->* C ((0 + 3) + (2 + 4)). Proof. apply multi_step with (P (C (0 + 3)) (P (C 2) (C 4))). { apply ST_Plus1. apply ST_PlusConstConst. } apply multi_step with (P (C (0 + 3)) (C (2 + 4))). { apply ST_Plus2. apply v_const. apply ST_PlusConstConst. } apply multi_R. apply ST_PlusConstConst. Qed. (* ================================================================= *) (** ** Normal Forms Again *) (** If [t] reduces to [t'] in zero or more steps and [t'] is a normal form, we say that "[t'] is a normal form of [t]." *) Definition step_normal_form := normal_form step. Definition normal_form_of (t t' : tm) := (t -->* t' /\ step_normal_form t'). (** Notice: - single-step reduction is deterministic - so, if [t] can reach a normal form, then this normal form is unique - so we can pronounce [normal_form t t'] as "[t'] is _the_ normal form of [t]." *) (** Indeed, something stronger is true (for this language): - the reduction of _any_ term [t] will eventually reach a normal form - i.e., [normal_form_of] is a _total_ function Formally, we say the [step] relation is _normalizing_. *) Definition normalizing {X : Type} (R : relation X) := forall t, exists t', (multi R) t t' /\ normal_form R t'. (** To prove that [step] is normalizing, we need a couple of lemmas. First, we observe that, if [t] reduces to [t'] in many steps, then the same sequence of reduction steps within [t] is also possible when [t] appears as the first argument to [P], and similarly when [t] appears as the second argument to [P] when the first argument is a value. *) Lemma multistep_congr_1 : forall t1 t1' t2, t1 -->* t1' -> P t1 t2 -->* P t1' t2. Proof. intros t1 t1' t2 H. induction H. - (* multi_refl *) apply multi_refl. - (* multi_step *) apply multi_step with (P y t2). + apply ST_Plus1. apply H. + apply IHmulti. Qed. Lemma multistep_congr_2 : forall t1 t2 t2', value t1 -> t2 -->* t2' -> P t1 t2 -->* P t1 t2'. Proof. (* FILL IN HERE *) Admitted. (** With these lemmas in hand, the main proof is a straightforward induction. _Theorem_: The [step] function is normalizing -- i.e., for every [t] there exists some [t'] such that [t] reduces to [t'] and [t'] is a normal form. _Proof sketch_: By induction on terms. There are two cases to consider: - [t = C n] for some [n]. Here [t] doesn't take a step, and we have [t' = t]. We can derive the left-hand side by reflexivity and the right-hand side by observing (a) that values are normal forms (by [nf_same_as_value]) and (b) that [t] is a value (by [v_const]). - [t = P t1 t2] for some [t1] and [t2]. By the IH, [t1] and [t2] reduce to normal forms [t1'] and [t2']. Recall that normal forms are values (by [nf_same_as_value]); we therefore know that [t1' = C n1] and [t2' = C n2], for some [n1] and [n2]. We can combine the [-->*] derivations for [t1] and [t2] using [multi_congr_1] and [multi_congr_2] to prove that [P t1 t2] reduces in many steps to [t' = C (n1 + n2)]. Finally, [C (n1 + n2)] is a value, which is in turn a normal form by [nf_same_as_value]. [] *) Theorem step_normalizing : normalizing step. Proof. unfold normalizing. induction t. - (* C *) exists (C n). split. + (* l *) apply multi_refl. + (* r *) (* We can use [rewrite] with "iff" statements, not just equalities: *) rewrite nf_same_as_value. apply v_const. - (* P *) destruct IHt1 as [t1' [Hsteps1 Hnormal1] ]. destruct IHt2 as [t2' [Hsteps2 Hnormal2] ]. rewrite nf_same_as_value in Hnormal1. rewrite nf_same_as_value in Hnormal2. destruct Hnormal1 as [n1]. destruct Hnormal2 as [n2]. exists (C (n1 + n2)). split. + (* l *) apply multi_trans with (P (C n1) t2). * apply multistep_congr_1. apply Hsteps1. * apply multi_trans with (P (C n1) (C n2)). { apply multistep_congr_2. apply v_const. apply Hsteps2. } apply multi_R. apply ST_PlusConstConst. + (* r *) rewrite nf_same_as_value. apply v_const. Qed. (* ================================================================= *) (** ** Equivalence of Big-Step and Small-Step *) (** Having defined the operational semantics of our tiny programming language in two different ways (big-step and small-step), it makes sense to ask whether these definitions actually define the same thing! *) Theorem eval__multistep : forall t n, t ==> n -> t -->* C n. (** The key ideas in the proof can be seen in the following picture: P t1 t2 --> (by ST_Plus1) P t1' t2 --> (by ST_Plus1) P t1'' t2 --> (by ST_Plus1) ... P (C n1) t2 --> (by ST_Plus2) P (C n1) t2' --> (by ST_Plus2) P (C n1) t2'' --> (by ST_Plus2) ... P (C n1) (C n2) --> (by ST_PlusConstConst) C (n1 + n2) That is, the multistep reduction of a term of the form [P t1 t2] proceeds in three phases: - First, we use [ST_Plus1] some number of times to reduce [t1] to a normal form, which must (by [nf_same_as_value]) be a term of the form [C n1] for some [n1]. - Next, we use [ST_Plus2] some number of times to reduce [t2] to a normal form, which must again be a term of the form [C n2] for some [n2]. - Finally, we use [ST_PlusConstConst] one time to reduce [P (C n1) (C n2)] to [C (n1 + n2)]. *) Proof. (* FILL IN HERE *) Admitted. (** For the other direction, we need one lemma, which establishes a relation between single-step reduction and big-step evaluation. *) Lemma step__eval : forall t t' n, t --> t' -> t' ==> n -> t ==> n. Proof. intros t t' n Hs. generalize dependent n. (* FILL IN HERE *) Admitted. (** The fact that small-step reduction implies big-step evaluation is now straightforward to prove. The proof proceeds by induction on the multi-step reduction sequence that is buried in the hypothesis [normal_form_of t t']. *) Theorem multistep__eval : forall t t', normal_form_of t t' -> exists n, t' = C n /\ t ==> n. Proof. (* FILL IN HERE *) Admitted. (* ################################################################# *) (** * Small-Step Imp *) (** Now for a more serious example: a small-step version of the Imp operational semantics. *) Inductive aval : aexp -> Prop := | av_num : forall n, aval (ANum n). (* ----------------------------------------------------------------- *) (** *** Small-step evaluation relation for arithmetic expressions *) (**[[[ ----------------- (AS_Id) i / st --> (st i) a1 / st --> a1' ------------------------- (AS_Plus1) a1 + a2 / st --> a1' + a2 aval v1 a2 / st --> a2' ------------------------------------- (AS_Plus2) v1 + a2 / st --> v1 + a2' -------------------------- (AS_Plus) n1 + n2 / st --> (n1 + n2) a1 / st --> a1' ------------------------- (AS_Minus1) a1 - a2 / st --> a1' - a2 aval v1 a2 / st --> a2' ---------------------------- (AS_Minus2) v1 - a2 / st --> v1 - a2' -------------------------- (AS_Minus) n1 - n2 / st --> (n1 - n2) a1 / st --> a1' ------------------------- (AS_Mult1) a1 * a2 / st --> a1' * a2 aval v1 a2 / st --> a2' ---------------------------- (AS_Mult2) v1 * a2 / st --> v1 * a2' -------------------------- (AS_Mult) n1 * n2 / st --> (n1 * n2) *) (* ----------------------------------------------------------------- *) (** *** In Coq *) Reserved Notation " a '/' st '-->a' a' " (at level 40, st at level 39). Inductive astep (st : state) : aexp -> aexp -> Prop := | AS_Id : forall i, AId i / st -->a ANum (st i) | AS_Plus1 : forall a1 a1' a2, a1 / st -->a a1' -> (APlus a1 a2) / st -->a (APlus a1' a2) | AS_Plus2 : forall v1 a2 a2', aval v1 -> a2 / st -->a a2' -> (APlus v1 a2) / st -->a (APlus v1 a2') | AS_Plus : forall n1 n2, APlus (ANum n1) (ANum n2) / st -->a ANum (n1 + n2) | AS_Minus1 : forall a1 a1' a2, a1 / st -->a a1' -> (AMinus a1 a2) / st -->a (AMinus a1' a2) | AS_Minus2 : forall v1 a2 a2', aval v1 -> a2 / st -->a a2' -> (AMinus v1 a2) / st -->a (AMinus v1 a2') | AS_Minus : forall n1 n2, (AMinus (ANum n1) (ANum n2)) / st -->a (ANum (minus n1 n2)) | AS_Mult1 : forall a1 a1' a2, a1 / st -->a a1' -> (AMult a1 a2) / st -->a (AMult a1' a2) | AS_Mult2 : forall v1 a2 a2', aval v1 -> a2 / st -->a a2' -> (AMult v1 a2) / st -->a (AMult v1 a2') | AS_Mult : forall n1 n2, (AMult (ANum n1) (ANum n2)) / st -->a (ANum (mult n1 n2)) where " a '/' st '-->a' a' " := (astep st a a'). (* ----------------------------------------------------------------- *) (** *** Small-step evaluation relation for boolean expressions *) (**[[[ a1 / st --> a1' --------------------------------- (BS_Eq1) (BEq a1 a2) / st --> (BEq a1' a2) aval v1 a2 / st --> a2' --------------------------------- (BS_Eq2) (BEq v1 a2) / st --> (BEq v1 a2') ------------------------------------------------------------------------- (BS_Eq) (BEq (ANum n1) (ANum n2)) / st --> (if (n1 =? n2) then true else BFalse) a1 / st --> a1' --------------------------------- (BS_LtEq1) (BLe a1 a2) / st --> (BLe a1' a2) aval v1 a2 / st --> a2' --------------------------------- (BS_LtEq2) (BLe v1 a2) / st --> (BLe v1 a2') -------------------------------------------------------------------------- (BS_LtEq) (BEq (ANum n1) (ANum n2)) / st --> (if (n1 <=? n2) then true else BFalse) b1 / st --> b1' ----------------------------- (BS_NotStep) (BNot b1) / st --> (BNot b1') ---------------------------- (BS_NotTrue) (BNot true) / st --> BFalse ---------------------------- (BS_NotFalse) (BNot BFalse) / st --> true b1 / st --> b1' ---------------------------------- (BS_AndStep) (BAnd b1 b2) / st --> (BAnd b1' b2) b2 / st --> b2' ----------------------------------------- (BS_AndTrueStep) (BAnd true b2) / st --> (BAnd true b2') -------------------------------- (BS_AndFalse) (BAnd BFalse b2) / st --> BFalse ---------------------------------- (BS_AndTrueTrue) (BAnd true true) / st --> true ----------------------------------- (BS_AndTrueFalse) (BAnd true BFalse) / st --> BFalse *) (* ----------------------------------------------------------------- *) (** *** In Coq *) Reserved Notation " b '/' st '-->b' b' " (at level 40, st at level 39). Inductive bstep (st : state) : bexp -> bexp -> Prop := | BS_Eq1 : forall a1 a1' a2, a1 / st -->a a1' -> (BEq a1 a2) / st -->b (BEq a1' a2) | BS_Eq2 : forall v1 a2 a2', aval v1 -> a2 / st -->a a2' -> (BEq v1 a2) / st -->b (BEq v1 a2') | BS_Eq : forall n1 n2, (BEq (ANum n1) (ANum n2)) / st -->b (if (n1 =? n2) then BTrue else BFalse) | BS_LtEq1 : forall a1 a1' a2, a1 / st -->a a1' -> (BLe a1 a2) / st -->b (BLe a1' a2) | BS_LtEq2 : forall v1 a2 a2', aval v1 -> a2 / st -->a a2' -> (BLe v1 a2) / st -->b (BLe v1 a2') | BS_LtEq : forall n1 n2, (BLe (ANum n1) (ANum n2)) / st -->b (if (n1 <=? n2) then BTrue else BFalse) | BS_NotStep : forall b1 b1', b1 / st -->b b1' -> (BNot b1) / st -->b (BNot b1') | BS_NotTrue : (BNot BTrue) / st -->b BFalse | BS_NotFalse : (BNot BFalse) / st -->b BTrue | BS_AndStep : forall b1 b1' b2, b1 / st -->b b1' -> (BAnd b1 b2) / st -->b (BAnd b1' b2) | BS_AndTrueStep : forall b2 b2', b2 / st -->b b2' -> (BAnd BTrue b2) / st -->b (BAnd BTrue b2') | BS_AndFalse : forall b2, (BAnd BFalse b2) / st -->b BFalse | BS_AndTrueTrue : (BAnd BTrue BTrue) / st -->b BTrue | BS_AndTrueFalse : (BAnd BTrue BFalse) / st -->b BFalse where " b '/' st '-->b' b' " := (bstep st b b'). (** The semantics of commands is the interesting part. We need two small tricks to make it work: - We use [skip] as a "command value" -- i.e., a command that has reached a normal form. - An assignment command reduces to [skip] (and an updated state). - The sequencing command waits until its left-hand subcommand has reduced to [skip], then throws it away so that reduction can continue with the right-hand subcommand. - We reduce a [while] command by transforming it into a conditional followed by the same [while]. *) (* ----------------------------------------------------------------- *) (** *** Small-step evaluation relation for commands *) (**[[[ a1 / st --> a1' ------------------------------ (CS_AssStep) i := a1 / st --> i := a1' / st ------------------------------------------ (CS_Ass) i := ANum n / st --> skip / (i !-> n ; st) c1 / st --> c1' / st' ------------------------------- (CS_SeqStep) c1 ; c2 / st --> c1' ; c2 / st' -------------------------- (CS_SeqFinish) skip ; c2 / st --> c2 / st b1 / st --> b1' --------------------------------------------------- (CS_IfStep) if b1 then c1 else c2 end / st --> if b1' then c1 else c2 end / st --------------------------------------------- (CS_IfTrue) if true then c1 else c2 end / st --> c1 / st ---------------------------------------------- (CS_IfFalse) if false then c1 else c2 end / st --> c2 / st ----------------------------------------------------------------- (CS_While) while b1 do c1 end / st --> if b1 then (c1; while b1 do c1 end) else skip end / st *) (* ----------------------------------------------------------------- *) (** *** In Coq *) Reserved Notation " t '/' st '-->' t' '/' st' " (at level 40, st at level 39, t' at level 39). Inductive cstep : (com * state) -> (com * state) -> Prop := | CS_AssStep : forall st i a1 a1', a1 / st -->a a1' -> <{ i := a1 }> / st --> <{ i := a1' }> / st | CS_Ass : forall st i n, <{ i := ANum n }> / st --> <{ skip }> / (i !-> n ; st) | CS_SeqStep : forall st c1 c1' st' c2, c1 / st --> c1' / st' -> <{ c1 ; c2 }> / st --> <{ c1' ; c2 }> / st' | CS_SeqFinish : forall st c2, <{ skip ; c2 }> / st --> c2 / st | CS_IfStep : forall st b1 b1' c1 c2, b1 / st -->b b1' -> <{ if b1 then c1 else c2 end }> / st --> <{ if b1' then c1 else c2 end }> / st | CS_IfTrue : forall st c1 c2, <{ if true then c1 else c2 end }> / st --> c1 / st | CS_IfFalse : forall st c1 c2, <{ if false then c1 else c2 end }> / st --> c2 / st | CS_While : forall st b1 c1, <{ while b1 do c1 end }> / st --> <{ if b1 then c1; while b1 do c1 end else skip end }> / st where " t '/' st '-->' t' '/' st' " := (cstep (t,st) (t',st')). (* ################################################################# *) (** * Concurrent Imp *) (** Finally, let's define a _concurrent_ extension of Imp, to show off the power of our new tools... *) Module CImp. Inductive com : Type := | CSkip : com | CAss : string -> aexp -> com | CSeq : com -> com -> com | CIf : bexp -> com -> com -> com | CWhile : bexp -> com -> com | CPar : com -> com -> com. (* <--- NEW *) Notation "'par' c1 'with' c2 'end'" := (CPar c1 c2) (in custom com at level 0, c1 at level 99, c2 at level 99). Notation "'skip'" := CSkip (in custom com at level 0). Notation "x := y" := (CAss x y) (in custom com at level 0, x constr at level 0, y at level 85, no associativity). Notation "x ; y" := (CSeq x y) (in custom com at level 90, right associativity). Notation "'if' x 'then' y 'else' z 'end'" := (CIf x y z) (in custom com at level 89, x at level 99, y at level 99, z at level 99). Notation "'while' x 'do' y 'end'" := (CWhile x y) (in custom com at level 89, x at level 99, y at level 99). Inductive cstep : (com * state) -> (com * state) -> Prop := (* Old part *) | CS_AssStep : forall st i a1 a1', a1 / st -->a a1' -> <{ i := a1 }> / st --> <{i := a1'}> / st | CS_Ass : forall st i n, <{i := ANum n}> / st --> <{skip}> / (i !-> n ; st) | CS_SeqStep : forall st c1 c1' st' c2, c1 / st --> c1' / st' -> <{c1 ; c2}> / st --> <{c1' ; c2}> / st' | CS_SeqFinish : forall st c2, <{skip ; c2}> / st --> c2 / st | CS_IfStep : forall st b1 b1' c1 c2, b1 /st -->b b1' -> <{if b1 then c1 else c2 end}> / st --> <{if b1' then c1 else c2 end}> / st | CS_IfTrue : forall st c1 c2, <{if true then c1 else c2 end}> / st --> c1 / st | CS_IfFalse : forall st c1 c2, <{if false then c1 else c2 end}> / st --> c2 / st | CS_While : forall st b1 c1, <{while b1 do c1 end}> / st --> <{if b1 then (c1; (while b1 do c1 end)) else skip end}> / st (* New part: *) | CS_Par1 : forall st c1 c1' c2 st', c1 / st --> c1' / st' -> <{par c1 with c2 end}> / st --> <{par c1' with c2 end}> / st' | CS_Par2 : forall st c1 c2 c2' st', c2 / st --> c2' / st' -> <{par c1 with c2 end}> / st --> <{par c1 with c2' end}> / st' | CS_ParDone : forall st, <{par skip with skip end}> / st --> <{skip}> / st where " t '/' st '-->' t' '/' st' " := (cstep (t,st) (t',st')). Definition cmultistep := multi cstep. Notation " t '/' st '-->*' t' '/' st' " := (multi cstep (t,st) (t',st')) (at level 40, st at level 39, t' at level 39). (* QUIZ Which state _cannot_ be obtained as a result of executing the following program (from some starting state)? par Y := 1 with Y := 2 end; X := Y (1) [Y=0] and [X=0] (2) [Y=1] and [X=1] (3) [Y=2] and [X=2] (4) None of the above *) (* QUIZ Which state _cannot_ be obtained as a result of executing the following program (from some starting state)? par Y := 1 with Y := Y + 1 end; X := Y (1) [Y=1] and [X=1] (2) [Y=0] and [X=1] (3) [Y=2] and [X=2] (4) [Y=n] and [X=n] for any [n >= 1] (5) 2 and 4 above (6) None of the above *) (* QUIZ How about this one? par Y := 0; X := Y + 1 with Y := Y + 1; X := 1 end. (1) [Y=0] and [X=1] (2) [Y=1] and [X=1] (3) [Y=0] and [X=0] (4) None of the above *) (* /QUIZ Among the many interesting properties of this language is the fact that the following program can terminate with the variable [X] set to any value. *) Definition par_loop : com := <{ par Y := 1 with while (Y = 0) do X := X + 1 end end}>. (** In particular, it can terminate with [X] set to [0]: *) Example par_loop_example_0: exists st', par_loop / empty_st -->* <{skip}> / st' /\ st' X = 0. Proof. eapply ex_intro. split. unfold par_loop. eapply multi_step. apply CS_Par1. apply CS_Ass. eapply multi_step. apply CS_Par2. apply CS_While. eapply multi_step. apply CS_Par2. apply CS_IfStep. apply BS_Eq1. apply AS_Id. eapply multi_step. apply CS_Par2. apply CS_IfStep. apply BS_Eq. simpl. eapply multi_step. apply CS_Par2. apply CS_IfFalse. eapply multi_step. apply CS_ParDone. eapply multi_refl. reflexivity. Qed. (** It can also terminate with [X] set to [2]: *) Example par_loop_example_2: exists st', par_loop / empty_st -->* <{skip}> / st' /\ st' X = 2. Proof. eapply ex_intro. split. eapply multi_step. apply CS_Par2. apply CS_While. eapply multi_step. apply CS_Par2. apply CS_IfStep. apply BS_Eq1. apply AS_Id. eapply multi_step. apply CS_Par2. apply CS_IfStep. apply BS_Eq. simpl. eapply multi_step. apply CS_Par2. apply CS_IfTrue. eapply multi_step. apply CS_Par2. apply CS_SeqStep. apply CS_AssStep. apply AS_Plus1. apply AS_Id. eapply multi_step. apply CS_Par2. apply CS_SeqStep. apply CS_AssStep. apply AS_Plus. eapply multi_step. apply CS_Par2. apply CS_SeqStep. apply CS_Ass. eapply multi_step. apply CS_Par2. apply CS_SeqFinish. eapply multi_step. apply CS_Par2. apply CS_While. eapply multi_step. apply CS_Par2. apply CS_IfStep. apply BS_Eq1. apply AS_Id. eapply multi_step. apply CS_Par2. apply CS_IfStep. apply BS_Eq. simpl. eapply multi_step. apply CS_Par2. apply CS_IfTrue. eapply multi_step. apply CS_Par2. apply CS_SeqStep. apply CS_AssStep. apply AS_Plus1. apply AS_Id. eapply multi_step. apply CS_Par2. apply CS_SeqStep. apply CS_AssStep. apply AS_Plus. eapply multi_step. apply CS_Par2. apply CS_SeqStep. apply CS_Ass. eapply multi_step. apply CS_Par1. apply CS_Ass. eapply multi_step. apply CS_Par2. apply CS_SeqFinish. eapply multi_step. apply CS_Par2. apply CS_While. eapply multi_step. apply CS_Par2. apply CS_IfStep. apply BS_Eq1. apply AS_Id. eapply multi_step. apply CS_Par2. apply CS_IfStep. apply BS_Eq. simpl. eapply multi_step. apply CS_Par2. apply CS_IfFalse. eapply multi_step. apply CS_ParDone. eapply multi_refl. reflexivity. Qed. End CImp. (* ################################################################# *) (** * Aside: A [normalize] Tactic *) (** Proofs that one expression multisteps to another can be tedious... *) Example step_example1 : (P (C 3) (P (C 3) (C 4))) -->* (C 10). Proof. apply multi_step with (P (C 3) (C 7)). apply ST_Plus2. apply v_const. apply ST_PlusConstConst. apply multi_step with (C 10). apply ST_PlusConstConst. apply multi_refl. Qed. (** The proof repeatedly applies [multi_step] until the term reaches a normal form. Fortunately The sub-proofs for the intermediate steps are simple enough that [auto], with appropriate hints, can solve them. *) Hint Constructors step value : core. Example step_example1' : (P (C 3) (P (C 3) (C 4))) -->* (C 10). Proof. eapply multi_step. auto. simpl. eapply multi_step. auto. simpl. apply multi_refl. Qed. (** The following custom [Tactic Notation] definition captures this pattern. In addition, before each step, we print out the current goal, so that we can follow how the term is being reduced. *) Tactic Notation "print_goal" := match goal with |- ?x => idtac x end. Tactic Notation "normalize" := repeat (print_goal; eapply multi_step ; [ (eauto 10; fail) | (instantiate; simpl)]); apply multi_refl. Example step_example1'' : (P (C 3) (P (C 3) (C 4))) -->* (C 10). Proof. normalize. (* The [print_goal] in the [normalize] tactic shows a trace of how the expression reduced... (P (C 3) (P (C 3) (C 4)) -->* C 10) (P (C 3) (C 7) -->* C 10) (C 10 -->* C 10) *) Qed. (** The [normalize] tactic also provides a simple way to calculate the normal form of a term, by starting with a goal with an existentially bound variable. *) Example step_example1''' : exists e', (P (C 3) (P (C 3) (C 4))) -->* e'. Proof. eexists. normalize. Qed. (** This time, the trace is: (P (C 3) (P (C 3) (C 4)) -->* ?e') (P (C 3) (C 7) -->* ?e') (C 10 -->* ?e') where [?e'] is the variable ``guessed'' by eapply. *)