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Background

Drones are becoming cheaper and popular
Motivation: videotaping + tracking
Modification of outdoor drone videotaping
Challenges:
No GPS

Controlling small follow-me distances



Tracking

Indoor methods (no GPS):
Computer Vision -- too inaccurate, expensive
RF Localization -- too finicky, static anchors
Coarse Movement Tracking -- too many sensors, expensive

Acoustic -- our goldilocks, just right



Acoustics

Challenges:
Environment noise -> multiple paths from drone to mobile
-> similar-path-length interference
Dynamic pathing -- drone and mobile are moving
Drone propellers are loud -> acoustic signal noise

Computational efficiency



Rabbit

Robust Acoustic Based Indoor Tracking

Modifies/combines existing work on FMCW, MUSIC, and Kalman filtering
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Figure 1: System diagram.




FMCW (Frequency Modulated Continuous Wave)

Estimates distance between audio signal source and sink based on FFT peaks
Issue:

multiple paths => multiple peaks => merged FFT peak => higher error

Solution: MUSIC . M . L/\MJ
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Figure 2: Peak merging in FFT-based FMCW.



MUSIC (MUIltiple Slgnal Classification)

Improves multi-path resolution and enhances distance estimation
Issues:
sensitive to distortion -> flatten frequency amplitude in speakers
false peak interference -> further apply filtering
eigenvalue decomposition -> use subsampling

My . y i
Un=Y _cos(2 fintsts), ) Thus, the resolution of our approach is 5 cm.
i=1

propeller noise -> Kalman filter the resulting distance and velocity measures
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Figure 3: The frequency response of the speaker and filter.
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Figure 4: The sharpness of peaks: (a) applying signal chop-
ping and comparing the performance with/without frequency
response compensation; (b) applying response compensation
and comparing the performance with/without signal chopping.



Kalman Filter

Drone propeller noise -> distance estimation error
Solution:

Apply a Kalman filter to distance and velocity to reduce error



Control

Q: How to get drone to follow agent once localized?
Control Theory
MPC and PID for autonomous control
Doppler shifts can be predictive of the user

DroneTack



MPC and PID

What we know: distance and orientation
We need to convert to drone parameters

MPC for Yaw and Pitch -> distance and orientation
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Figure 5: The system with a controller



Predictive users

MPC and PID need more to predict
We need user’'s movement

Doppler shifts give relative velocity



Evaluation

Conditions to consider for Rabbit:
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Evaluation

Things to consider for DroneTrack
Different MPC parameters
Different user speeds
Convergence time
User prediction
Varying drone-to-user Distance

Location of phone



Evaluation
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Figure 12: Errors on drone-to-user distance.
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Evaluation

User prediction
Varying drone-to-user Distance

Location of phone
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Evaluation

Computation Cost
Tracking Time and overall time and percentage of cpu used
Battery Life

10 minute period on a galaxy s7 (3000 mAh)

CPU Usage (%) Delay (ms)

Tracking 13 9
Overall 42 13




Limitations

Audio signal physical constraints

Microphone direction

Possible sound annoyance



https://www.youtube.com/watch?v=YHI4016v4lY

A video demonstration


https://www.youtube.com/watch?v=YHI4016v4lY

