Indoor Follow Me Drone

Cliff Bakalian Justin Goodman

Background

Drones are becoming cheaper and popular

Motivation: videotaping + tracking

Modification of outdoor drone videotaping

Challenges:

No GPS

Controlling small follow-me distances

Tracking

Indoor methods (no GPS):

Computer Vision -- too inaccurate, expensive

RF Localization -- too finicky, static anchors

Coarse Movement Tracking -- too many sensors, expensive

Acoustic -- our goldilocks, just right

Acoustics

Challenges:

Environment noise -> multiple paths from drone to mobile

-> similar-path-length interference

Dynamic pathing -- drone and mobile are moving

Drone propellers are loud -> acoustic signal noise

Computational efficiency

Rabbit

Robust Acoustic Based Indoor Tracking

Modifies/combines existing work on FMCW, MUSIC, and Kalman filtering

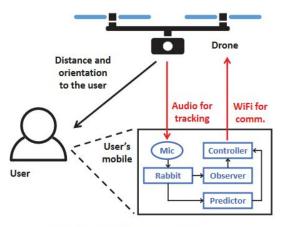


Figure 1: System diagram.

FMCW (Frequency Modulated Continuous Wave)

Estimates distance between audio signal source and sink based on FFT peaks

Issue:

multiple paths => multiple peaks => merged FFT peak => higher error

Solution: MUSIC

$$v_{m}(t) = \alpha \cos(2\pi f_{min}t_{d} + \frac{\pi B(2t't_{d} - t_{d}^{2})}{T}). \qquad (1)$$
(a) Path 1 only (FT)
(b) $\int_{0}^{0} \int_{0}^{0} \int_{0$

Figure 2: Peak merging in FFT-based FMCW.

등 0.5

0

Magnitude 50

100

300

100 200 300 400 500 Frequency (Hz)

(d) Two Paths (MUSIC)

Frequency (Hz)

(b) Path 2 only (FFT)

Magnitude 20

0

300 400 500

200

Frequency (Hz)

MUSIC (MUltiple SIgnal Classification)

Improves multi-path resolution and enhances distance estimation

Issues:

sensitive to distortion -> flatten frequency amplitude in speakers

false peak interference -> further apply filtering

eigenvalue decomposition -> use subsampling

 $v_n = \sum_{i=1}^{M_p} \cos(2\pi f_i n t_s + \phi_i),$ (2) Thus, the resolution of our approach is 5 cm. propeller noise -> Kalman filter the resulting distance and velocity measures

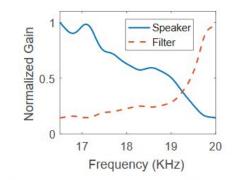


Figure 3: The frequency response of the speaker and filter.

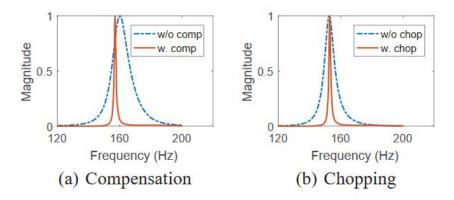


Figure 4: The sharpness of peaks: (a) applying signal chopping and comparing the performance with/without frequency response compensation; (b) applying response compensation and comparing the performance with/without signal chopping.

Kalman Filter

Drone propeller noise -> distance estimation error

Solution:

Apply a Kalman filter to distance and velocity to reduce error

Control

Q: How to get drone to follow agent once localized?

Control Theory

MPC and PID for autonomous control

Doppler shifts can be predictive of the user

DroneTack

MPC and PID

What we know: distance and orientation

We need to convert to drone parameters

MPC for Yaw and Pitch -> distance and orientation

Needs a N_{p} and w_{u}

PID for roll -> lateral velocity

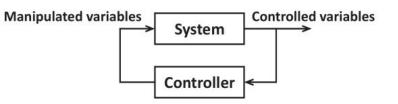
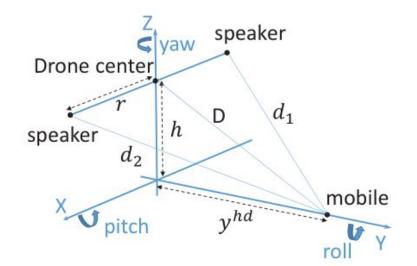
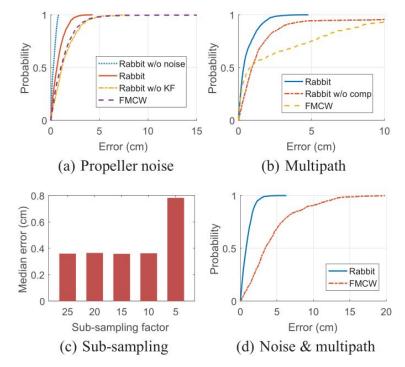
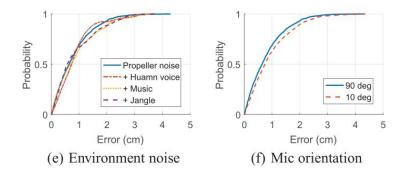



Figure 5: The system with a controller


Predictive users


MPC and PID need more to predict

We need user's movement

Doppler shifts give relative velocity

Conditions to consider for Rabbit:

Things to consider for DroneTrack

Different MPC parameters

Different user speeds

Convergence time

User prediction

Varying drone-to-user Distance

Location of phone

Different MPC parameters

Different user speeds

Convergence time

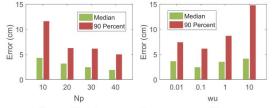


Figure 12: Errors on drone-to-user distance.

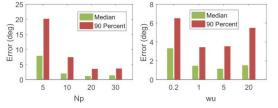
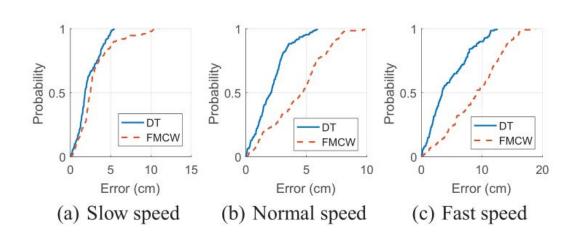
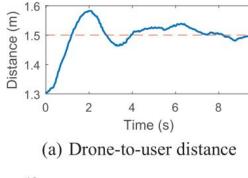
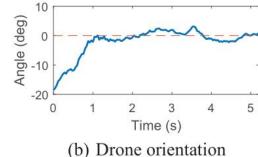
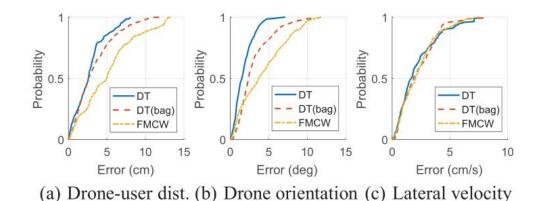
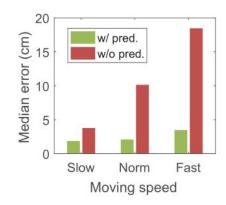
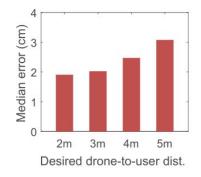





Figure 13: Errors on drone orientation.






User prediction

Varying drone-to-user Distance

Location of phone

Computation Cost

Tracking Time and overall time and percentage of cpu used

Battery Life

10 minute period on a galaxy s7 (3000 mAh)

	CPU Usage (%)	Delay (ms)
Tracking	13	9
Overall	42	13

Limitations

Audio signal physical constraints

Microphone direction

Possible sound annoyance

https://www.youtube.com/watch?v=YHI4016v4IY

^ video demonstration