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Motivation

The rapid evolution of advanced driver assistance
and vehicle automation systems have led to:

Increased demand for lane-level vehicle
positioning that is accurate even in urban canyon
environments.




le positioning
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Today'’s veh

(GPS), often in conjunction with vehicle

Today’s vehicles primarily use the Global Positioning System

odometry for correcting short term GPS biases.
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Today'’s vehicle positioning

Position accuracy can be further improved to a few meters with motion sensors and map matching.

For lane-level positioning, highly instrumented automated vehicle prototypes use cameras or LiDAR
sensors to reference their measurements against available detailed models and imagery of the roadway.




Can Wifi FTM help?
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Can Wifi FTM help?

Specially with high WiFi access points density

Can WiFi FTM complement the existing GPS
and odometry systems to achieve lane-level
positioning in urban canyons?




Can Wifi FTM Augment GPS?

Upper Manhattan (Parked Cars)




Can Wifi FTM Augment GPS?

Approach Vehicle GPS GPS Android Loc.
Error (m) 19.04 18.2 19.6

Table 1: Median tracking error of related technologies in
Manhattan, NY.




Can Wifi FTM Augment GPS?1
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Challenges: FTM causing WiIiFi congestion

Passive-client in RSSI-based Trackini
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Challenges: FTM causing WiIiFi congestion

Passive-client in RSSI-based Trackini
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Actively signaling client in FTM
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Challenges: FTM latency and vehicle mobility

SAP;

» iw wlan0 measurement ftm_request apList
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Challenges: FTM latency and vehicle mobility
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Challenges: FTM latency and vehicle mobility
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Challenges: FTM latency and vehicle mobility
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Challenges: FTM latency and vehicle mobility
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Challenges: FTM latency and vehicle mobility
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Challenges: FTM latency and vehicle mobility
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Challenges: Rang-only and noisy FTM

e Need tosimultaneously track vehicles and APs with range-only measurement.
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Challenges: Rang-only and noisy FTM

e Need tosimultaneously track vehicles and APs with range-only measurement.
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Challenges: Rang-only and noisy FTM

e Need tosimultaneously track vehicles and APs with range-only measurement.
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Challenges: Rang-only and noisy FTM

e Need tosimultaneously track vehicles and APs with range-only measurement.
e Inurban canyons, WiFi communication can be heavily affected by multipath fading and shadowing.
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Challenges:

e FTM causing WiFi congestion
Noisy FTM
Unknown AP locations
Range-only

Wi-Go Overview

Pull APs’ Locations and Weights
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Wi-Go Overview
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Challenges:

e FTM causing WiFi congestion

Noisy FTM
Unknown AP locations
Range-only

Pull APs’ Locations and Weights
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Challenges:

e FTM causing WiFi congestion
Noisy FTM
Unknown AP locations
Range-only

Wi-Go Overview

Pull APs’ Locations and Weights
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Wi-Go Overview

Challenges:

e FTM causing WiFi congestion
Noisy FTM
Unknown AP locations
Range-only

Pull APs’ Locations and Weights
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Wi-Go Overview

Challenges:

e FTM causing WiFi congestion
Noisy FTM
Unknown AP locations
Range-only

Pull APs’ Locations and Weights
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Wi-Go Overview

Challenges:

e FTM causing WiFi congestion

Noisy FTM
Unknown AP locations
Range-only

Pull APs’ Locations and Weights
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Challenges:

e FTM causing WiFi congestion
Noisy FTM
Unknown AP locations
Range-only

Wi-Go Overview

Pull APs’ Locations and Weights
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FTMSLAM

The vehicle and the surrounding WiFi APs are localized and tracked, by incorporating WiFi FTMs, GPS,
and on-board sensor measurements.
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FTMSLAM

The vehicle and the surrounding WiFi APs are localized and tracked, by incorporating WiFi FTMs, GPS,
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and on-board sensor measurements.

1. Initialization
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FTMSLAM

The vehicle and the surrounding WiFi APs are localized and tracked, by incorporating WiFi FTMs, GPS,
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and on-board sensor measurements.

1. Initialization
2. Update
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FTMSLAM

The vehicle and the surrounding WiFi APs are localized and tracked, by incorporating WiFi FTMs, GPS,
and on-board sensor measurements.
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FTMSLAM

The vehicle and the surrounding WiFi APs are localized and tracked, by incorporating WiFi FTMs, GPS,
and on-board sensor measurements.

1. Initialization ’ ’
2. Update
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FTMSLAM

The vehicle and the surrounding WiFi APs are localized and tracked, by incorporating WiFi FTMs, GPS,
and on-board sensor measurements.
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FTM Weighting

We use vehicle wheel encoders and inertial sensors to assign weights to
FTM measurements.

r2

r1

AP
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FTM Weighting

We use vehicle wheel encoders and inertial sensors to assign weights to AP
FTM measurements.

r2

e letdbethe estimated displacement distance reported by the inertial

sensors between two FTM measurement locations.

r1
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FTM Weighting

We use vehicle wheel encoders and inertial sensors to assign weights to AP
FTM measurements.

r2

e letdbethe estimated displacement distance reported by the inertial

sensors between two FTM measurement locations.

r1

e letrlandr2bethe measured FTM ranges at these two locations. d
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FTM Weighting

We use vehicle wheel encoders and inertial sensors to assign weights to AP
FTM measurements.

r2

e letdbethe estimated displacement distance reported by the inertial
sensors between two FTM measurement locations.
r1

e letrlandr2bethe measured FTM ranges at these two locations. d

e thefollowing triangular inequality must be satisfied:
[ri-r2|<d=<ri1+r2

39



FTM Weighting

Algorithm:

e Foreach FTM measurement r(t), we evaluate the triangle
inequality of r(t) with another FTM measurement within a
small time window.

e The weight for measurement r(t) is thus the ratio of
measurement pairs that satisfy the triangle inequality over

the total number of pairs.

Time window

>

-

AP
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APs Location Estimation

Location is estimated by solving the following weighted nonlinear least square optimization problem.

They called it Uncertainty-Weighted Mobile Multilateration problem.
T FTM 2
min )" Yt wii o (t) (dlstance (x;,v;(t)) — 73 (t))
x .
J

Where x; is the AP location, vi(t) is the location of vehicle ‘i’ at time stamp ‘t’, rj;(t) is the collected FTM
range, and w;; is the computed weight.
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Bearing estimation
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Bearing estimation
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Bearing estimation

0; = tan T

-1 X+Tmin _
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Congestion-Aware Adaptation of FTM Request
Transmission

e Adapt FTM request rate (spb) for surrounding APs, in order to maximize the tracking
accuracy while remaining under the maximum message rate constraint.

e Vehicle networks estimate the maximum message rate that is allowed to send
messages without causing congestion
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Congestion-Aware Adaptation of FTM Request
Transmission (Cont'd)

e Aim: minimize the vehicle localization error while avoiding congestion
e Error Contributing Factor:

o Geometry of chosen subset of APs (HDoP)

o Error model in AP location (epp)

o FTMrangingerror (e,)
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Congestion-Aware Adaptation of FTM Request
Transmission (Cont'd)

e Optimization Problem:

argmirl} VehicleLocError(HDoP, e,p, €;,)
sp

s.t. Z spb; = rate;imit

spb; = 0, 1<i<|APs|
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Experimental Setup

> Vehicles
o Small form factor computer
o  WIiFiCard: 2x Intel Dual Band Wireless-AC
8260
o  WiFiexternal antennas: 4x 6dBi RP-SMA
Dual Band 2.4GHz, 5GHz with 1.637m
cable to attach antennas on the roof
o  Linux FTMtool toinitiate and extract FTMs
from these WiFi cards
>  WiFiAPs
o  ASUS Wireless AC1300 RT-ACRH13 APs
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Experimental Setup (Cont'd)

> Ground Truth
o  High precision GPS (<1m error)
o Intel RealSense Depth Cameras (<0.7 m
error)
> Existing Technologies
o  Standalone GPS
o Vehicle GPS (GPS + Odometry)
o Android Fusion Location API
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Evaluation Metrics

> Localization Error

> FTM Latency
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Vehicle Localization Error

Upper Manhattan (Parked Cars)
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Vehicle Localization Error
Mldtown Manhattan (Indoor APs)
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Access Points Localization

Parked Cars Indoor APs

Approach

Wi-Go
GPS+0Odometry 143 m 16.4 m

GPS 189 m 27.4m
Smartphone Fused 17.8 m 16 m

Loc.
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ns-3 Simulation Results

Simulation Values
Parameters

Simulation time | 30 sec
Transmission 16.5 dBm
Power

Channel 80 MHz
Bandwidth

Channel 155
number

LOS reference | 21.87 dB
pathloss

LOS pathloss 3.39

exponent

500

S
o
o

FTM Session Latency (msec)
w
o
o

B 10spb
B 20spb
__|Adaptive spb

N
o
o

100 -

25% 50% 75%
Vehicle Penetration Ratio

100%
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Micro Benchmark: Effect of number of APs
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Micro Benchmark: Comparing Approaches
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Conclusion

e Avehicle localization system that uses WiFi Fine Time Measurements to achieve lane level
accuracy in challenging urban canyons.

e Simultaneously estimate vehicle and WiFi APs positions by fusing WiFi FTMs with GPS, and
Odometry in FTMSLAM framework.

e Wi-GO achieves median localization error of 1.3m in urban canyons when WiFi APs are on parked
vehicles, and 2.1m when WiFi APs are in buildings.

e Wi-GO achieves median localization error of 0.8m in Suburban environments when APs are in
apartment buildings.
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Insights!

e Usealready converged Access points in estimating the position of the new APs.
e Selflocalization inindoor environments

e Range Only Bearing Estimation technique

e Latency vs Positioning Accuracy

e Computational complexity
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Thank You! 7
Any questions? ﬂ



