
 1

University of Maryland College Park

Dept of Computer Science

CMSC132 Fall 2018

Exam #3

FIRSTNAME, LASTNAME (PRINT IN UPPERCASE):

STUDENT ID (e.g. 123456789):

Instructions

 Please print your answers and use a pencil.

 Do not remove the staple from the exam. Removing it will interfere with the Gradescope scanning process.

 To make sure Gradescope can recognize your exam, print your name, write your directory id at the bottom of pages

with the text DirectoryId, provide answers in the rectangular areas provided, and do not remove any exam pages. Even

if you use the provided extra pages for scratch work, they must be returned with the rest of the exam.

 This exam is a closed-book, closed-notes exam, with a duration of 50 minutes and 200 total points.

 Your code must be efficient.

 You don’t need to use meaningful variable names; however, we expect good indentation.

Grader Use Only

#1 Problem #1 (Algorithmic Complexity) 30

#2 Problem #2 (Heaps) 16

#3 Problem #3 (Hashing) 15

#4 Problem #4 (Linear Data Structures) 65

#5 Problem #5 (Trees) 74

Total Total 200

 2

 3

Problem #1 (Algorithmic Complexity)

1. (20 pts) For the following problems you need to provide the asymptotic complexity using Big O notation. In addition,

you need to identify the critical section (circle it) and the time function (Time  below). Here is an example:

 for (j = 1; j <= n; j++) {

 System.out.println(j);

 }

 System.out.println("Goodbye");

 Time  n + 1

 Big O  O(n)

a. (10 pts)
 for (k = 1; k <= n; k++) {

 System.out.println(k);

 System.out.println(k * k);

 for (t = 1; t <= n / 2; t++) {

 System.out.println(k * t);

 }

 }

 Time 

 Big O 

b. (10 pts)

 for (i = 1; i <= n; i *= 2) {

 for (k = 1; k <= n - 10; k++) {

 System.out.println(k);

 }

 System.out.println(i);

 }

 Time 

 Big O 

2. (6 pts) List the following Big O expressions in order of asymptotic complexity (lowest complexity first).

 O(nlog(n)) O(kn) O(nn) O(n3) O(nk)

3. (4 pts) Indicate the complexity (Big O) for an algorithm whose running time does not change when input size doubles.

DirectoryId:

 4

Problem #2 (Heaps)

Use the following heap to answer the questions that follow.

1. (8 pts) Draw the heap (as a tree) that would result from inserting 32 in the above heap.

2. (8 pts) Draw the heap (as a tree) that would result by deleting 45 from the original heap (not the heap from step 1.)

45

50

78 52

64

65 80

 5

Problem #3 (Hashing)

1. (3 pts) Does the default implementation of the equals and hashCode methods for a Java class satisfy the Java Hash

Code contract? Yes / No

2. (3 pts) Returning the integer value 10 as the implementation of the hashCode() method:

a. It is correct, but it is inefficient as it can lead to many collisions.

b. It is correct, and efficient.

c. It is incorrect.

d. None of the above.

3. (3 pts) Which of the following represents the optimal performance for hashing?

a. O(n)

b. O(1)

c. O(log(n))

d. None of the above.

4. (3 pts) Which of the following is a collision handling strategy that looks for an unused entry in the table (wrapping

around if necessary)?

a. Open Addressing

b. Separate Chaining

c. Deep Searching

d. None of the above.

5. (3 pts) Linear probing can cause:

a. Primary Clustering

b. Secondary Clustering

c. Null Clustering

d. None of the above.

DirectoryId:

 6

Problem #4 (Linear Data Structures)

Use the following classes to implement the methods below. You may not add any instance variables nor static variables

to either class, you may not add any methods to the Node class, and you may not use the Java API LinkedList class. A

cheat sheet with set and map methods can be found on the next page. Use compareTo and not equals for comparisons.

public class LinkedList<T extends Comparable<T>> {

 private class Node {

 private T data;

 private Node next;

 private Node(T data) { this.data = data; next = null; }

 }

 private Node head;

 public LinkedList() { head = null; }

}

1. (37 pts) Provide a NON-RECURSIVE implementation for the getCount method below. The method returns a

TreeMap with the number of instances found of each unique data element in the list. An empty map should be

returned if the list is empty.

public TreeMap<T, Integer> getCount()

 7

2. (28 pts) Provide a RECURSIVE implementation for the removeLastIfEqualFirst method. The method removes the

last element/node from the list if the data component of the last element from the list is the same as the data

component of the first element. If you use any iteration statement (e.g., while loop, do while, for loop) you will

get 0 credit. No processing will take place if the list is empty or it only has one element. You may only add one

auxiliary method.

public void removeLastIfEqualFirst(){

Set methods Map Methods

DirectoryId:

boolean add(E e) boolean remove(Object o)

boolean contains(Object o) void clear()

boolean isEmpty() int size()

V put(K key, V value) V remove(Object key)

V get(Object key) void clear()

boolean isEmpty() int size()

 8

Problem #5 (Trees)

Implement the methods below based on the following Java class definitions. You may not add any instance variables

nor static variables to either class and you may not add any methods to the Node class. Your solutions must be

RECURSIVE and you may only add one auxiliary method. If you use any iteration statement (e.g., while loop, do

while, for loop) you will get 0 credit. Use compareTo and not equals for comparisons.

public class BinarySearchTree<K extends Comparable<K>, V> {

 private class Node {

 private K key;

 private V data;

 private Node left, right;

 public Node(K key, V data) { this.key = key; this.data = data;}

 }

 private Node root;

}

1. (44 pts) Implement the RECURSIVE method getKeysOnPathToElem that adds to the ArrayList parameter the key

component of nodes in the path traversed to determine whether the tree has an element with a target (parameter) key

value. The method returns the number of nodes that were visited. You can assume the answer ArrayList parameter is

initially empty.

public int getKeysOnPathToElem(K target, ArrayList<K> answer){

 9

2. (30 pts) Implement the RECURSIVE method removeLeaves that removes the leaf nodes from the tree.

public void removeLeaves() {

DirectoryId:

EXTRA PAGE IN CASE YOU NEED IT

 10

LAST PAGE

