CMSC 330: Organization of Programming
Languages

Type Systems

CMSC330 Fall 2021

Type Systems

» A type system is a series of rules that ascribe types to
expressions

* The rules prove statements e : ¢

» The process of applying these rules is called type
checking

* Or simply, typing
* Type checking aka the program’s static semantics

» Different languages have different type systems

OCaml Type System: Conditionals

» Syntax
e if el then e2 else e3

» Type checking

e [fel:booland e2: tand e3: tthen if el then e2 else
e3: t

* More formally:

F el .bool Fe2Z: ¢t Fe3: t
Fif el then el else e3 : ¢t

Type Safety

» A well-typed program is accepted by the language’s type
system

» A program going wrong is one that the language’s

semantics gives no definition (undefined)
» “Colorless green ideas sleep furiously”

» If the program were to be run, anything could happen
» char buf[4]; buf[4] = *X’; // undefined!

» A type-safe language is one in which for every program,
well-typed = well-defined

* Or, Well-typed programs never go wrong, in the words of Robin
Milner in 1978

Not always well defined = Not well typed

» Consider the following OCaml function f
let £ xy =
let z = if %<0 then “0” else x in
z/y
» s execution is defined in some cases

e f11—5o1
« £1 0 — Division by zero exception

» But not all
e £1 [2] » since [2] can’t be a divisor
e £ “hi” 0 » since “hi” cannot compare with O
e £ -1 2 > since “0” cannot be a dividend

» S0: fcannot be well typed
* (type system doesn’t prevent all bad arg types)

Possibility: Well-defined, not well-typed

» In OCaml, the expression 4+"hi" is undefined

* Ocaml’s type system does not typecheck this expression,
ensuring it is never executed
» Good!

» But the following expressions are well-defined, but still

rejected

* if true then 0 else 4+"hi"
> Always evaluates to 0

* let f4 x = if x <= abs x then 0 else 4+"hi"
> £4 e evaluatesto 0 forall (e : int)

Dynamic Type Checking

» The run-time checks performed by dynamic languages
often called dynamic type checking
* These languages may be said to have a dynamic type system

» The “type” of an expression checked as needed

* Values keep tag, set when the value is created, indicating its type
(e.g., what class it has)

» Disallowed operations cause run-time exception
* Type errors may be latent in code for a long time

Quiz 1

» When is the type of a variable determined in a dynamically
typed language?

A. When the program is compiled

B. At run-time, when the variable is used

C. At run-time, when that variable is first assigned to
D. At run-time, when the variable is last assigned to

11

Quiz 1

» When is the type of a variable determined in a dynamically
typed language?

A. When the program is compiled

B. At run-time, when the variable is used

C. At run-time, when that variable is first assigned to
D. At run-time, when the variable is last assigned to

12

Quiz 2

» When is the type of a variable determined in a statically
typed language?

A. When the program is compiled

B. At run-time, when the variable is used

C. At run-time, when that variable is first assigned to
D. At run-time, when the variable is last assigned to

13

Quiz 2

» When is the type of a variable determined in a statically
typed language?

A. When the program is compiled

B. At run-time, when the variable is used

C. At run-time, when that variable is first assigned to
D. At run-time, when the variable is last assigned to

14

Static vs. Dynamic Type Systems

» OCaml, Java, Haskell, etc. are statically typed
» Ruby, Python, etc. are dynamically typed

» But we can view dynamically typed languages as statically
typed in a particular sense:

* Can view all expressions as having a static type Dyn
» The language is uni-typed

* All operations are permitted on values of this type
» E.g., in Ruby, all objects accept any method call

* But: Some operations result in a run-time exception

» Those not supported by the value’s dynamic “type” (tag)
> Nevertheless, such behavior is well defined

15

Soundness and Completeness

» Type safety is a soundness property
* That a term type checks implies its execution will be well-defined

» Static type systems are rarely complete

* That a term is well-defined does not imply that it will type check
> if true then 0 else 4+"hi"

» Dynamic type systems are often complete

* All expressions are well defined and (statically) type check
 4+"hi" well-defined: it gives a run-time exception

16

Type Safe?

» Java, Haskell, Ocaml, Ruby, Python: Yes (arguably).

* The languages’ (static) type systems restrict programs to those
that are defined

» Caveats: Foreign function interfaces to type-unsafe C, bugs in the
language design, bugs in the implementation, etc.

» C, C++: No.

* The languages’ type systems do not prevent undefined behavior

» Unsafe casts (int to pointer), out-of-bounds array accesses, dangling
pointer dereferences, etc.

18

Devil’'s Bargain with Dynamic Types?

» OK, dynamically typed languages are type-safe

» ... but only by trading compile-time errors for (well-
defined) run-time exceptions!
* I'd prefer to know that no exceptions will be possible
» Can’t we build a better static type system?

* |l.e., that that aims to eliminate all language-level run-time errors
and is also complete?

» Yes, we can build more precise static type systems, but
never a perfect one

* To do so would be undecidable!

20

Fancy Types

» Lots of ideas over the last few decades aimed at
improving the precision of type systems
* So they can rule out more run-time errors
» Generic types (parametric polymorphism)
* for containers and generic operations on them
» Subtyping
* for interchanging objects with related shapes

» Dependent types can include data in types

* Instead of int 1ist, we could have int n1list for a list of n
elements. Hence hd has type int nl1list where n>0.

21

Type Systems with Fancy Types

» OCaml’s type system has types for
* generics (polymorphism), objects, curried functions, ...
* all unsupported by C

» Haskell's type system has types for

* Type classes (qualified types), effect-isolating monads, higher-
rank polymorphism, ...

* All unsupported by OCaml
» More precision ensures more run-time errors prevented,
with less contorted programs: Good!

* But now the programmer must understand (and sometimes do)
more ..

22

Perfect Type System? Impossible

» No type system can do all of following
* (1) always terminate, (2) be sound, (3) be complete

* While trying to eliminate all run-time exceptions, e.g.,
» Using an int as a function
» Accessing an array out of bounds
» Dividing by zero, ...

» Doing so would be undecidable

* by reduction to the halting problem
* Eg.,,while (..) {..} arr[-1] = 1;
» Error tantamount to proving that the while loop terminates

25

Static vs. Dynamic Type Checking

Having carefully stated facts about static checking, can now
consider arguments about which is betfter:

static checking or dynamic checking

27

Claim 1: Dynamic is more convenient

Dynamic typing lets you build a heterogeneous list or return a “number

or a string” without workarounds

Ruby: a = [1,1.5]

OCaml :
type t =
Int of int
| Float of float

let a = [Int 1; Float 1.5];;

29

Claim 1: Static is more convenient

Can assume data has the expected type without cluttering code with
dynamic checks or having errors far from the logical mistake

Ruby : OCaml:
def cube (x) let cube x = x * x * x
if x.is_a? (Numeric) (* we know x is int *)

X * x * x
else
"Bad argument”
end
end

30

Claim 2: Static prevents useful programs

Any sound static type system forbids programs that do nothing wrong

Ruby :
if el then
“lady”
else
[7,"hi"]
end

OCaml:

if el then “lady” else (7,”hi”)
(* does not type-check ¥*)

31

Claim 2: But always workarounds

Rather than suffer time, space, and late-errors costs of tagging
everything, statically typed languages let programmers “tag as
needed” (e.g., with types)

Ruby: Tags everything implicitly (uni-typed)
OcCaml: Tag explicitly, as needed (code up unifying type)

type tort = Int of int
| String of string
| Cons of tort * tort
| Fun of (tort -> tort)
I

if el then

String "lady"
else

Cons (Int 7, String "hi")

32

Claim 3: Static catches bugs earlier

Static typing catches many simple bugs as soon as “compiled”.
« Since such bugs are always caught, no need to test for them.
* In fact, can code less carefully and “lean on” type-checker

Ruby :

def pow (x,y)
if y == 0 then
1
else
x * pow (y - 1)

end
end
can’t detect until run

OCaml:

let pow x y =
if y=0 then 1l
else x * pow (y-1)

(* does not type-check ¥*)

33

Claim 3: Static catches only easy bugs

But static often catches only “easy” bugs, so you still have to test your
functions, which should find the “easy” bugs too

Ruby : OCaml :
def pow (x,y) St pow XY =
if y == 0 then if y =0 then
1 else x + pow x (y-1)
else N N
x + pow (x, (y-1)) (* oops *)

end
end

34

Claim 4: Static typing is faster

» Language implementation:
* Does not need to store tags (space, time)
* Does not need to check tags (time)
* Can rely on values being a particular type, so it can perform more
optimizations
» Your code:

* Does not need to check arguments and results beyond what is
evidently required

35

Claim 4: Dynamic typing is not too much slower

» Language implementation:

* Can use remove some unnecessary tags and tests despite the
lack of types

» While difficult (impossible) in general, it is often possible for the
performance-critical parts of a program

» Your code:

* Do not need to “code around” type-system limitations with extra
tags, functions etc.

36

Claim 5: Code reuse easier with dynamic

Without a restrictive type system, more code can just be reused with
data of different types

» If you use cons cells for everything, libraries that work on cons cells
are useful

» Collections libraries are amazingly useful but often have very
complicated static types

* Polymorphism/generics/etc. are hard to understand, but are aiming to provide
what dynamic typing gives naturally

» Etc.

37

Claim 5: Code reuse easier with static

The type system serves as “checked documentation,” making the
“contract” with others’ code easier to understand and use correctly

38

Redux: Which Do You Prefer?

» (a) static type systems (e.g., Java, Ocaml)
» (b) dynamic type systems (e.g., Ruby, Python)

39

Static vs. Dynamic: Age-old Debate

» Static vs. dynamic typing is too coarse a question

* Better question: What should we enforce statically?
» E.g., OCaml checks array bounds, division-by-zero, at run-time

* Legitimate trade-offs

» ldea: Flexible languages allowing best-of-both-worlds?

* Use static types in some parts of the program, but dynamic
checking in other parts?
» Called gradual typing: an idea still under active research

* Would programmers use such flexibility well? Who decides?

40

