
CMSC 330:
Organization of Programming Languages

Administrivia

1CMSC330 Fall 2021

Course Goals

Describe and compare programming language features
• And understand how language designs have evolved

Choose the right language for the job
Write better code
• Code that is shorter, more efficient, with fewer bugs

In short:
• Become a better programmer with a better

understanding of your tools.

CMSC330 Fall 2021 2

Course Activities
Learn different types of languages
Learn different language features and tradeoffs
• Programming patterns repeat between languages

Study how languages are specified
• Syntax, Semantics — mathematical formalisms

Study how languages are implemented
• Parsing via regular expressions (automata theory) and context

free grammars
• Mechanisms such as closures, tail recursion, lazy evaluation,

garbage collection, …
Language impact on computer security

3CMSC330 Fall 2021

Syllabus

Dynamic/ Scripting languages (Ruby)
Functional programming (OCaml)
Regular expressions & finite automata
Context-free grammars & parsing
Lambda Calculus and Operational Semantics
Safe, “zero-cost abstraction” programming (Rust)
Secure programming
Scoping, type systems, parameter passing, comparing
language styles; other topics

4CMSC330 Fall 2021

Calendar / Course Overview
Tests
• 4 quizzes, 2 midterm exams, 1 final exam
• Do not schedule your interviews on exam dates

Clicker quizzes
• In class, graded, during the lectures

Projects
• Project 1 – Ruby
• Project 2-5 – OCaml (and parsing, automata)
• Project 6 – Security

Ø P1, P2, and P4 are split in two parts

5CMSC330 Fall 2021

Clickers

Turning Technology subscription is free
• See course syllabus for link to sign up

In class clicker questions are not graded. Instead, clicker
quizzes will be grade on ELMS.

6CMSC330 Fall 2021

Quiz time!

According to IEEE Spectrum Magazine which is the “top”
programming language of 2019?

A. Java
B. R
C. Python
D. C++

CMSC330 Fall 2021 7

session ID: cmsc

Discussion Sections
Discussions will be in-person

Discussion sections will deepen understanding of
concepts introduced in lecture

Oftentimes discussion section will consist of programming
exercises

There will also be be quizzes, and some lecture material
in discussion section

9CMSC330 Fall 2021

Project Grading

You have accounts on the Grace cluster
Projects will be graded using the Gradescope
• Software versions on these machines are canonical

Develop programs on your own machine
• Your responsibility to ensure programs run correctly on the grace

cluster
See web page for Ruby, OCaml, etc. versions we use, if
you want to install at home
• Linux VM or Docker

10CMSC330 Fall 2021

Rules and Reminders

Use lecture notes as your text
• Videos of lectures will be recorded for later reference
• You will be responsible for everything in the notes, even if it is not

directly covered in class!
Keep ahead of your work
• Get help as soon as you need it

Ø Office hours, Piazza (email as a last resort)

Avoid distractions, to yourself and your classmates
• Keep cell phones quiet
• No laptops / tablets in class

Ø Prefer hand-written notes (else, sit in back of class)
11CMSC330 Fall 2021

Academic Integrity

All written work (including projects) done on your own
• Do not copy code from other students
• Do not copy code from the web
• Do not post your code on the web

Cheaters are caught by auto-comparing code
Work together on high-level project questions
• Discuss approach, pointers to resources: OK
• Do not look at/describe another student’s code
• If unsure, ask an instructor!

Work together on practice exam questions
12CMSC330 Fall 2021

CMSC 330:
Organization of Programming Languages

Overview

13CMSC330 Fall 2021

Plethora of programming languages

LISP: (defun double (x) (* x 2))

Prolog: size([],0).
size([H|T],N) :-
size(T,N1), N is N1+1.

OCaml: List.iter (fun x -> print_string x)
[“hello, ”; s; "!\n”]

Smalltalk: (#(1 2 3 4 5) select:[:i | i even])

CMSC330 Fall 2021 14

All Languages are (sort of) Equivalent

A language is Turing complete if it can compute any
function computable by a Turing Machine

Essentially all general-purpose programming languages
are Turing complete
• I.e., any program can be written in any programming language

Therefore this course is useless?!
• Learn one programming language, always use it

15CMSC330 Fall 2021

Studying Programming Languages

Will make you a better programmer
• Programming is a human activity

Ø Features of a language make it easier or harder to program for a specific
application

• Ideas or features from one language translate to, or are later
incorporated by, another
Ø Many “design patterns” in Java are functional programming techniques

• Using the right programming language or style for a problem may
make programming
Ø Easier, faster, less error-prone

16CMSC330 Fall 2021

Studying Programming Languages

Become better at learning new languages
• A language not only allows you to express an idea, it also shapes

how you think when conceiving it

• You may need to learn a new (or old) language
Ø Paradigms and fads change quickly in CS

Ø Also, may need to support or extend legacy systems

17CMSC330 Fall 2021

Changing Language Goals

1950s-60s – Compile programs to execute efficiently
• Language features based on hardware concepts

Ø Integers, reals, goto statements

• Programmers cheap; machines expensive
Ø Computation was the primary constrained resource

Ø Programs had to be efficient because machines weren’t
• Note: this still happens today, just not as pervasively

18CMSC330 Fall 2021

Changing Language Goals

Today
• Language features based on design concepts

Ø Encapsulation, records, inheritance, functionality, assertions

• Machines cheap; programmers expensive
Ø Scripting languages are slow(er), but run on fast machines
Ø They’ve become very popular because they ease the programming

process
• The constrained resource changes frequently

Ø Communication, effort, power, privacy, …
Ø Future systems and developers will have to be nimble

19CMSC330 Fall 2021

Language Attributes to Consider
Syntax
• What a program looks like

Semantics
• What a program means (mathematically), i.e., what it computes

Paradigm and Pragmatics
• How programs tend to be expressed in the language

Implementation
• How a program executes (on a real machine)

20CMSC330 Fall 2021

21

Syntax

The keywords, formatting expectations, and structure of
the language
• Differences between languages usually superficial

Ø C / Java if (x == 1) { … } else { … }
Ø Ruby if x == 1 … else … end
Ø OCaml if (x = 1) then … else …

• Differences initially jarring; overcome with experience

Concepts such as regular expressions, context-free
grammars, and parsing handle language syntax

CMSC330 Fall 2021

22

Semantics

What does a program mean? What does it compute?
• Same syntax may have different semantics in different

languages!

Can specify semantics informally (in prose) or formally
(in mathematics)

Physical Equality Structural Equality
Java a == b a.equals(b)
C a == b *a == *b
Ruby a.equal?(b) a == b
OCaml a == b a = b

CMSC330 Fall 2021

Why Formal Semantics?

Textual language definitions are often incomplete and
ambiguous
• Leads to two different implementations running the same

program and getting a different result!
A formal semantics is a mathematical definition of what
programs compute
• Benefits: concise, unambiguous, basis for proof

We will consider operational semantics
• Consists of rules that define program execution
• Basis for implementation, and proofs of program correctness

24CMSC330 Fall 2021

25

Paradigm
There are many ways to compute something
• Some differences are superficial

Ø For loop vs. while loop
• Some are more fundamental

Ø Recursion vs. looping
Ø Mutation vs. functional update
Ø Manual vs. automatic memory management

Language’s paradigm favors some computing methods
over others. This class:
- Imperative - Resource-controlled (zero-cost)
- Functional - Scripting/dynamic

CMSC330 Fall 2021

Imperative Languages

Also called procedural or von Neumann
Building blocks are procedures and statements
• Programs that write to memory are the norm

int x = 0;
while (x < y) x = x + 1;

• FORTRAN (1954)
• Pascal (1970)
• C (1971)

26CMSC330 Fall 2021

Functional (Applicative) Languages

Favors immutability
• Variables are never re-defined
• New variables a function of old ones (exploits recursion)

Functions are higher-order
• Passed as arguments, returned as results

• LISP (1958)
• ML (1973)
• Scheme (1975)
• Haskell (1987)
• OCaml (1987)

27CMSC330 Fall 2021

OCaml

A (mostly-)functional language
• Has objects, but won’t discuss (much)
• Developed in 1987 at INRIA in France
• Dialect of ML (1973)

Natural support for pattern matching
• Generalizes switch/if-then-else – very elegant

Has full featured module system
• Much richer than interfaces in Java or headers in C

Includes type inference
• Ensures compile-time type safety, no annotations

28CMSC330 Fall 2021

Dynamic (Scripting) Languages
Rapid prototyping languages for common tasks
• Traditionally: text processing and system interaction
“Scripting” is a broad genre of languages
• “Base” may be imperative, functional, OO…
Increasing use due to higher-layer abstractions
• Originally for text processing; now, much more

• sh (1971)
• perl (1987)
• Python (1991)
• Ruby (1993)

30

#!/usr/bin/ruby
while line = gets do

csvs = line.split /,/
if(csvs[0] == "330") then
...

CMSC330 Fall 2021

Ruby

An imperative, object-oriented scripting language
• Full object-orientation (even primitives are objects!)
• And functional-style programming paradigms
• Dynamic typing (types hidden, checked at run-time)
• Similar in flavor to other scripting languages (Python)

Created in 1993 by Yukihiro Matsumoto (Matz)
• “Ruby is designed to make programmers happy”

Core of Ruby on Rails web programming framework
• a key to Ruby’s popularity

31CMSC330 Fall 2021

Theme: Software Security

Security is a big issue today
Features of the language can help (or hurt)
• C/C++ lack of memory safety leaves them open for many

vulnerabilities: buffer overruns, use-after-free errors, data
races, etc.

• Type safety is a big help, but so are abstraction and isolation, to
help enforce security policies, and limit the damage of possible
attacks

Secure development requires vigilance
• Do not trust inputs – unanticipated inputs can effect surprising

results! Therefore: verify and sanitize

33CMSC330 Fall 2021

Zero-cost Abstractions in Rust

A key motivator for writing code in C and C++ is the low
(or zero) cost of the abstractions use
• Data is represented minimally; no metadata required
• Stack-allocated memory can be freed quickly
• Malloc/free maximizes control – no GC or mechanisms to support

it are needed
But no-cost abstractions in C/C++ are insecure
Rust language has safe, zero-cost abstractions
• Type system enforces use of ownership and lifetimes
• Used to build real applications – web browsers, etc.

CMSC330 Fall 2021 34

Concurrent / Parallel Languages

Traditional languages had one thread of control
• Processor executes one instruction at a time

Newer languages support many threads
• Thread execution conceptually independent
• Means to create and communicate among threads

Concurrency may help/harm
• Readability, performance, expressiveness

Won’t cover in this class
• Threads covered in 132 and 216; more in 412, 433

35CMSC330 Fall 2021

Other Language Paradigms

We are not covering them all in CMSC330!
Parallel/concurrent/distributed programming
• Cilk, Fortress, Erlang, MPI (extension), Hadoop (extension);

more on these in CMSC 433
Logic programming
• Prolog, λ-prolog, CLP, Minikanren, Datalog

Object-oriented programming
• Simula, Smalltalk, C++, Java, Scala

Many other languages over the years, adopting various
styles

CMSC330 Fall 2021 36

Other Languages
There are lots of other languages w/ various features
• COBOL (1959) – Business applications

Ø Imperative, rich file structure
• BASIC (1964) – MS Visual Basic

Ø Originally designed for simplicity (as the name implies)
Ø Now it is object-oriented and event-driven, widely used for UIs

• Logo (1968) – Introduction to programming
• Forth (1969) – Mac Open Firmware

Ø Extremely simple stack-based language for PDP-8
• Ada (1979) – The DoD language

Ø Real-time
• Postscript (1982) – Printers- Based on Forth

39CMSC330 Fall 2021

Implementation

How do we implement a programming language?
• Put another way: How do we get program P in some language

L to run?

Two broad ways
• Compilation
• Interpretation

40CMSC330 Fall 2021

Compilation

Source program translated (“compiled”) to another
language
• Traditionally: directly executable machine code

Ø gcc, clang
• Bytecode, Portable Code

Ø Javac

def greet(s)
print("Hello, ”)
print(s)
print("!\n”)

end

11230452
23230456
01200312
…

“world” “Hello, world!”

41CMSC330 Fall 2021

Interpretation

Interpreter executes each instruction in source
program one step at a time
• No separate executable

def greet(s)
print("Hello, ”)
print(s)
print("!\n”)

end

“world”

“Hello, world!”

42CMSC330 Fall 2021

Quiz: What do you think?

Which of the following languages has implementations as
a compiler and an interpreter?

a) C
b) Python
c) Java
d) All of the above

CMSC330 Fall 2021 43

Quiz: What do you think?

Which of the following languages has implementations as
a compiler and an interpreter?

a) C
b) Python
c) Java
d) All of the above

CMSC330 Fall 2021 44

A language often has a
canonical kind of
implementation, but there
can be others

45

Important features
• Regular expression handling
• Objects

Ø Inheritance
• Closures/code blocks
• Immutability
• Tail recursion
• Pattern matching

Ø Unification
• Abstract types
• Garbage collection

Declarations
• Explicit
• Implicit

Type system
• Static
• Polymorphism
• Inference

• Dynamic
• Type safety

CMSC330 Fall 2021

Defining Paradigm: Elements of PLs

Summary

Programming languages vary in their
• Syntax
• Semantics
• Style/paradigm and pragmatics
• Implementation

They are designed for different purposes
• And goals change as the computing landscape changes, e.g., as

programmer time becomes more valuable than machine time
Ideas from one language appear in others

46CMSC330 Fall 2021

