
CMSC 330:
Organization of Programming Languages

Introduction to Ruby

CMSC 330 Fall 2021

Ruby

An object-oriented, imperative,
dynamically typed (scripting) language
• Similar to Python, Perl
• Fully object-oriented

Created in 1993 by Yukihiro Matsumoto
(Matz)
• “Ruby is designed to make programmers

happy”
Adopted by Ruby on Rails web
programming framework in 2005
• a key to Ruby’s popularity

2CMSC 330 Spring 2021

11

Static Type Checking (Static Typing)

Before program is run
• Types of all expressions are determined
• Disallowed operations cause compile-time error

Ø Cannot run the program

Static types are often explicit (aka manifest)
• Specified in text (at variable declaration)

Ø C, C++, Java, C#
• But may also be inferred – compiler determines type based on

usage
Ø OCaml, C#, Rust, and Go (limited)

CMSC 330 Spring 2021

12

Dynamic Type Checking

During program execution
• Can determine type from run-time value
• Type is checked before use
• Disallowed operations cause run-time exception

Ø Type errors may be latent in code for a long time

Dynamic types are not manifest
• Variables are just introduced/used without types
• Examples

Ø Ruby, Python, Javascript, Lisp
Ø Note: Ruby v3 adds support for static types, mixed with its native dynamic

ones. We’ll discuss this more, later in the course.

CMSC 330 Spring 2021

Static and Dynamic Typing

Ruby is dynamically typed, C is statically typed
Ruby
x = 3
x = "foo" # gives x a

new type
x.foo # NoMethodError

at runtime

/* C */
int x;
x = 3;
x = "foo"; /* not allowed */
/* program doesn’t compile */

13CMSC 330 Spring 2021

14

Tradeoffs?

CMSC 330 Spring 2021

Static type checking Dynamic type checking

More work for programmer (at first)

Catches more (and subtle) errors at
compile time

Precludes some correct programs

More efficient code
(fewer run-time checks)

Less work for programmer (at first)

Delays some errors to run time

Allows more programs
(Including ones that will fail)

Less efficient code
(more run-time checks)

Java: Mostly Static Typing

In Java, types are mostly checked statically
Object x = new Object();
x.println(“hello”); // No such method error at compile time

But sometimes checks occur at run-time
Object o = new Object();
String s = (String) o; // No compiler warning, fails at run time
// (Some Java compilers may be smart enough to warn about above cast)

15CMSC 330 Spring 2021

Quiz 1: Get out your clickers!

True or false: This program has a type error

A. True
B. False

16

Ruby
x = “hello”
y = 2.5
y = x

CMSC 330 Spring 2021

Quiz 1: Get out your clickers!

True or false: This program has a type error

A. True
B. False

17

Ruby
x = “hello”
y = 2.5
y = x

CMSC 330 Spring 2021

Quiz 2

True or false: This program has a type error

A. True
B. False

18

/* C */
void foo() {
int a = 10;
char *b = “hello”;
a = b;

}

CMSC 330 Spring 2021

Quiz 2

True or false: This program has a type error

A. True
B. False

19

/* C */
void foo() {
int a = 10;
char *b = “hello”;
a = b;

}

CMSC 330 Spring 2021

Control Statements in Ruby

A control statement is one that affects which instruction is
executed next
• While loops
• Conditionals

if grade >= 90 then
puts "You got an A"

elsif grade >= 80 then
puts "You got a B"

else
puts "You’re not doing so well"

end

20

i = 0
while i < n
i = i + 1

end

CMSC 330 Spring 2021

What is True?

The guard of a conditional is the expression that
determines which branch is taken

True: anything except
• false
• nil

Warning to C programmers: 0 is not false!

if grade >= 90 then
...

Guard

21CMSC 330 Spring 2021

Quiz 3: What is the output?

22

x = 0
if x then
puts “true”

elsif x == 0 then
puts “== 0”

else
puts “false”

end

A. Nothing –
there’s an

error
B. “false”
C. “== 0”
D. “true”

CMSC 330 Spring 2021

Quiz 3: What is the output?

23

x = 0
if x then
puts “true”

elsif x == 0 then
puts “== 0”

else
puts “false”

end

A. Nothing –
there’s an

error
B. “false”
C. “== 0”
D. “true”

CMSC 330 Spring 2021

x is neither false nor nil so

the first guard is satisfied

