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Ruby

An object-oriented, imperative, 
dynamically typed (scripting) language
• Similar to Python, Perl 
• Fully object-oriented

Created in 1993 by Yukihiro Matsumoto 
(Matz)
• “Ruby is designed to make programmers 

happy”
Adopted by Ruby on Rails web 
programming framework in 2005
• a key to Ruby’s popularity
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Static Type Checking (Static Typing)

Before program is run 
• Types of all expressions are determined
• Disallowed operations cause compile-time error

Ø Cannot run the program

Static types are often explicit (aka manifest)
• Specified in text (at variable declaration)

Ø C, C++, Java, C#
• But may also be inferred – compiler determines type based on 

usage
Ø OCaml, C#, Rust, and Go (limited)
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Dynamic Type Checking

During program execution
• Can determine type from run-time value
• Type is checked before use
• Disallowed operations cause run-time exception

Ø Type errors may be latent in code for a long time

Dynamic types are not manifest
• Variables are just introduced/used without types
• Examples

Ø Ruby, Python, Javascript, Lisp
Ø Note: Ruby v3 adds support for static types, mixed with its native dynamic 

ones. We’ll discuss this more, later in the course.
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Static and Dynamic Typing

Ruby is dynamically typed, C is statically typed
# Ruby
x = 3
x = "foo"  # gives x a

# new type
x.foo # NoMethodError

# at runtime

/* C */
int x;
x = 3;
x = "foo"; /* not allowed */
/* program doesn’t compile */
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Tradeoffs?

CMSC 330 Spring 2021

Static type checking Dynamic type checking

More work for programmer (at first)

Catches more (and subtle) errors at 
compile time

Precludes some correct programs

More efficient code 
(fewer run-time checks)

Less work for programmer (at first)

Delays some errors to run time

Allows more programs
(Including ones that will fail)

Less efficient code 
(more run-time checks)



Java: Mostly Static Typing

In Java, types are mostly checked statically
Object x = new Object();
x.println(“hello”);   // No such method error at compile time

But sometimes checks occur at run-time
Object o = new Object();
String s = (String) o;  // No compiler warning, fails at run time
// (Some Java compilers may be smart enough to warn about above cast)
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Quiz 1: Get out your clickers!

True or false: This program has a type error

A. True
B. False
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# Ruby
x = “hello”
y = 2.5
y = x 
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Quiz 2

True or false: This program has a type error

A. True
B. False
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/* C */
void foo() {
int a = 10;
char *b = “hello”;
a = b;

}
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Control Statements in Ruby

A control statement is one that affects which instruction is 
executed next
• While loops
• Conditionals

if grade >= 90 then
puts "You got an A"

elsif grade >= 80 then
puts "You got a B"

else
puts "You’re not doing so well"

end
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i = 0
while i < n
i = i + 1

end
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What is True?

The guard of a conditional is the expression that 
determines which branch is taken

True: anything except
• false
• nil

Warning to C programmers: 0 is not false!

if grade >= 90 then
...

Guard
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Quiz 3: What is the output?
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x = 0
if x then 
puts “true”

elsif x == 0 then
puts “== 0”

else
puts “false”

end 

A. Nothing –
there’s an 

error
B. “false”
C. “== 0”
D. “true”
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x is neither false nor nil so 

the first guard is satisfied


