CMSC 330: Organization of
Programming Languages

Lambda Calculus

CMSC330 Fall 2021

Turing Machine

Infinite Tape
110 0l0/|1]1 1|o
N\

$ -] Y ™ - -
Read fWnte Head

Control Unit

' ey]

Turing Completeness

» Turing machines are the most powerful
description of computation possible
e They define the Turing-computable functions
» A programming language is Turing complete if
¢ |t can map every Turing machine to a program
e A program can be written to emulate a Turing machine
e |t is a superset of a known Turing-complete language
» Most powerful programming language possible
e Since Turing machine is most powerful automaton

Programming Language Expressiveness

» S0 what language features are needed to express
all computable functions?
e \What's a minimal language that is Turing Complete?

» Observe: some features exist just for convenience

e Multi-argument functions foo(a, b, c)
» Use currying or tuples

e Loops while (a <b) ...
> Use recursion
e Side effects a:.=1

» Use functional programming pass “heap” as an argument to
each function, return it when with function’s result:
effectful : ‘a —» 's — ('s * 'a)

Programming Language Expressiveness

» It is not difficult to achieve Turing Completeness
e |Lots of things are ‘accidentally’ TC
» Some fun examples:
e Xx86 64 mov instruction
e Minecraft
e Magic: The Gathering
e Java Generics

» There’'s a whole cottage industry of proving things
to be TC

» But: What is a “core” language that is TC?

10

Lambda Calculus (A-calculus)

» Proposed in 1930s by

e Alonzo Church
(born in Washingon DC!)

» Formal system

e Designed to investigate functions & recursion
e For exploration of foundations of mathematics

» Now used as
e Tool for investigating computability

e Basis of functional programming languages
> Lisp, Scheme, ML, OCaml, Haskell...

N
.«V’
=/

11

Why Study Lambda Calculus?

» It is a “core” language
e Very small but still Turing complete

» But with it can explore general ideas

e |anguage features, semantics, proof systems,
algorithms, ...

» Plus, higher-order, anonymous functions (aka
lambdas) are now very popular!
o C++ (C++11), PHP (PHP 5.3.0), C# (C# v2.0), Delphi
(since 2009), Objective C, Java 8, Swift, Python,

Ruby (Procs), ... (and functional languages like
OCaml, Haskell, F#, ...)

e EXxcel, as of 2021!

12

Lambda Calculus Syntax

» A lambda calculus expression is defined as

e =X variable
| Ax.e abstraction (fun def)
| ee application (fun call)

> This grammar describes ASTs; not for parsing - ambiguous!
» Lambda expressions also known as lambda terms

e Ax.eislike (fun x -> e) In OCaml

That's it! Nothing but higher-order functions

13

Three Conventions

» Scope of A extends as far right as possible
e Subject to scope delimited by parentheses
e AX. Ay.x Yy is same as AX.(Ay.(x y))

» Function application is left-associative
e Xyzis(xy)z
e Same rule as OCaml|

» As a convenience, we use the following “syntactic
sugar’ for local declarations
e letx=e1ine2is short for (Ax.e2) e1

17

Quiz #1

Ax. (y z) and Ax.y z are equivalent

A. True
B. False

20

Quiz #1

Ax. (y z) and Ax.y z are equivalent

A.True
B. False

21

Quiz #2

This term is equivalent to which of
the following?

AX.Xx a b

A. (Ax.x) (a b)
B. (((Ax.x) a) Db)
C. Ax. (x (a b))
D. (Ax. ((x a) b))

22

Quiz #2

This term is equivalent to which of
the following?

AX.Xx a b

A. (Ax.x) (a b)
B. (((Ax.x) a) Db)
C. Ax. (x (a b))
D. (Ax. ((x a) b))

23

But what does it mean??

» Many ways to define the semantics of LC
» We will look at two

- Operational Semantics
- Definitional Interpreter

24

Lambda Calculus Semantics

» Evaluation: All that's involved are function calls
(Ax.e1) e2

e Evaluate e1 with x replaced by e2

» This application is called beta-reduction
e (Ax.e1) e2 — el[x:=e2]
> e1[x:=e2] is e1 with occurrences of x replaced by e2
» This operation is called substitution

« Replace formals with actuals
 Instead of using environment to map formals to actuals

e \We allow reductions to occur anywhere in a term
> Order reductions are applied does not affect final value!
» When a term cannot be reduced further it is in
beta normal form

25

Beta Reduction Example

» (AXXAz.X2)y
— (AX.(Az.(x 2))) ¥

~

— (NQZ-(X z))) y
(N

— Nz.(y z)

// since A\ extends to right

/[apply (Ax.e1) e2 — el[x:=e2]
[l where el =Az.(xz),e2 =y

/l final result

» Equivalent OCaml code
e (funx->(funz->(x2z))y — funz->(yz)

Parameters
e Formal
e Actual

26

Big-Step Operational Semantics

» Beta reduction says how to evaluate a single call

» [t doesn’t say how to evaluate a term with many
function calls in it

» We can use operational semantics to “fully
evaluate™ a term in one “big step”

Beta reduction, here (Ax.e1) U (Ax.e1)

N~

el U (Ax.e3) e2led e3[xi=ed]led
ele2led

27

Two Varieties

» There are two common variants of big-step
semantics

« Eager evaluation (aka strict, or call by value)
« Lazy evaluation (aka call by name)

28

Eager

» Notice that we evaluated the argument €2 before
performing the beta-reduction

» This is the first version we saw
» Hence, eager

(Ax.e1) U (Ax.e1)

el U (Ax.e3) e2led e3[xi=ed]led
ele2led

29

Lazy

» Alternatively, we could have performed beta
reduction without evaluating e2; use it as is

« Hence, lazy

(Ax.e1) U (Ax.e1)

el U (Ax.e3) e3[x:=e2] | e4
ele2led

30

Small Step Semantics

» Operational semantics rules we have seen have
always been "big step”, i.e., complete evaluation

» e U e’ says that e will terminate as e’

» This is a little unsatisfying
» It doesn’t account for nontermination
» It doesn'’t identify where a program fails to progress

» Small-step semantics addresses these problems
» e — e’ In small-step says e takes one step to e’

» We say a term e1 can be beta-reduced to term e2 if e
steps to e2 after one or more steps

31

Small-Step Rules of LC

» Here are the “small-step” (-) rules:

el — e2
(Ax.e1) — (Ax.e2)

e2 — ed el — e3

ele2 -elel el e2 - e3 e2

(Ax.e1) e2 — el[x:=e2]

32

Evaluation Strategies

» These rules are highly flexible

» |t might be that for a given program, there are several
possible rules that could apply

» Typically, a programming language will choose an
evaluation strategy which is described by using
only a subset of these rules. Examples:

» Call by Value
» Call by Need
» Partial Evaluation

33

Call by Value

» Before doing a beta reduction, we make sure the
argument cannot, itself, be further evaluated

» This is known as call-by-value (CBV)
» This is the Eager big step approach

el - e3 e2 —» e3

ele2 - e3 e2 ele2 > el e3

e=(Ax.e2)ore=y

(Ax.e1) e — el[x:=¢€]

34

Beta Reductions (CBV)

» (AX.X)z — Z
> ()\xy) Z— Y

> ()\X.Xy)Z—> ZYy

e A function that applies its argument to y

35

Beta Reductions (CBV)

» (AX.XY) (Az.2) > (Az.2)y >y

> ()\X)\yX y) Z —)\yz y
e A curried function of two arguments
e Applies its first argument to its second

> (AXAYXY) (AZ.22) X = (\y (Az.z2)y)x — (AZ.ZZ)X —X X

36

Quiz #3

(Ax.y) z can be beta-reduced to

Ay

B.y z

C.z

D. cannot be reduced

37

Quiz #3

(Ax.y) z can be beta-reduced to

A.y

B.y z

C.z

D. cannot be reduced

38

Quiz #4

Which of the following reduces to Az. z?

a

(AY. Az. X) z
b) (

)
) (Az.AX.Zz)y

) (AY.Y) (AX. Az. Z2) W
) (AY. AX. z) z (Az. 2)

@

d

39

Quiz #4

Which of the following reduces to Az. z?

a) (Ay.Az.x)z

b) (Az.AX.Zz)y

c) (Ay.y) (AX.Az.z)w
d) (Ay. AX. z) z (Az. 2)

40

Evaluation Order

» The CBV rules we saw permit small-stepping
either the function part or the argument part

» If both are possible, the rules allow either one
el - e3 el — e3

ele2 - e3 e2 ele2 > el e3

» Here’s how we would require left-to-right order

el - e3 el=y or el=Ax.e
e2 — e3

ele2 » e3 e2

ele2 > el e3

» The second rule prohibits evaluating e2 except when
e1 cannot be evaluated further

41

Call by Name

» Instead of the CBV strategy, we can specifically
choose to perform beta-reduction before we
evaluate the argument

» This is known as call-by-name (CBN)
» This is the Lazy small-step approach

el - e3

ele2 »> e3 e2

(Ax.e1) e2 — el[x:=e2]

42

CBN Reduction

» CBV
e (Az.z) ((Ay.y) X) — (Az.Zz) X — X

» CBN
® (Az.z) ((Ay.y) X) — (Ay.y) X — X

43

Beta Reductions (CBN)

(AX.X (Ay.y)) (ur) —

(AX.(Aw. X W)) (y z) —

44

Beta Reductions (CBN)

(AX.X (Ay.y)) (ur) — (ur) (Ay.y)

(AX.(Aw. X W)) (y 2) — (Aw. (Y Z2) W)

45

Why Does This Matter?

» The rules we just showed are very common for
programming languages based on LC

» CBV is the most common (e.g. OCaml, Java)

» CBN does come up (Haskell uses a variant known as
“call-by-need”) but is much less common

» Interestingly: more programs terminated under
call-by-name. Can you think of why?

. Consider: (Ax.e2) e1,
« What if e1 would never terminate, but e2 would?

46

Partial Evaluation

» That rule is useful when you have a beta-
reduction under a lambda:
e (Ay.(Az.z) y x) — (Ay.y X)

» Called partial evaluation
e Can combine with CBN or CBV (just add in the rule)

¢ In practical languages, this evaluation strategy is
employed in a limited way, as compiler optimization

int foo(int x) { int foo(int x) {

return 0+x; —> return x;

} }

48

Static Scoping & Alpha Conversion

» Lambda calculus uses static scoping

» Consider the following
o (AXX(AXX))z—?
» The rightmost “x” refers to the second binding

e This is a function that
» Takes its argument and applies it to the identity function

» This function is “the same” as (Ax.x (Ay.y))

e Renaming bound variables consistently preserves meaning
» This is called alpha-renaming or alpha conversion

o EX.AXX=Ay.Yy=Az.z Ay.AXYy = Az.AX.z

49

Quiz #5

Which of the following expressions is alpha
equivalent to (alpha-converts from)

(AX. AYy. XYy)y

a) Ay.
b) Az.
C)(AX.Az.x2)y
d) (AX. Ay. X y) z

50

Quiz #5

Which of the following expressions is alpha
equivalent to (alpha-converts from)

(AX. AYy. XYy)y

a)Ay.yy
b)A\z.y z

c) (AX.Az.x2)y
d) (AX. Ay. X y) z

51

Getting Serious about Substitution

» WWe have been thinking informally about
substitution, but the details matter

» S0, let’s carefully formalize it, to help us see
where it can get tricky!

52

Defining Substitution

» Use recursion on structure of terms
o X[x:=e|=¢e // Replace x by e
o y[x:=e]=y /'y is different than x, so no effect
o (e1e2)[x:=e] = (el[x:=€]) (e2[x:=€e])
// Substitute both parts of application
o (Ax.e')[x:=e] = Ax.€’

> In Ax.€’, the x is a parameter, and thus a local variable that is
different from other x’s. Implements static scoping.

> S0 the substitution has no effect in this case, since the x being
substituted for is different from the parameter x that is in €’

o (Ay.e))[x:=e]="7

» The parameter y does not share the same name as x, the
variable being substituted for

> Is Ay.(e’[x:=e]) correct? No...

53

Variable Capture

» How about the following?
o (AXAYXY)y —?

e \When we replace y inside, we don’t want it to be
captured by the inner binding of y, as this violates
static scoping

o le., (AXAYXY)Yy#FAYYyYy

» Solution

e (AX.Ay.xy)is “the same” as (AX.Az.x z)
» Due to alpha conversion

e S0 alpha-convert (AX.Ay.X y) y to (AX.Az.x z) y first

> Now (AX.Azxz)y — Az.y z

54

Completing the Definition of Substitution

» Recall: we need to define (Ay.e’)[x:=¢e]
e \We want to avoid capturing (free) occurrences of y in e

e Solution: alpha-conversion!
» Change y to a variable w that does not appearin e’ ore
(Such a w is called fresh)
» Replace all occurrences of y in €’ by w.
» Then replace all occurrences of x in €’ by el

» Formally:
(Ay.e’)[x:=e] = Aw.((e’ [y:=w]) [x:=€]) (w is fresh)

95

Beta-Reduction, Again

» Whenever we do a step of beta reduction
e (Ax.e1) e2 — el[x:=e2]
¢ \We must alpha-convert variables as necessary

e Sometimes performed implicitly (w/o showing
conversion)

» Examples

o (AXXAYXY)Yy=(AX.AzXZ)y — A2y Z Iy —z
o (AX.X (AX.X)) z=(Ay.y (AX.X))z—>zZ (AX.X) /I X —>Yy

56

Quiz #6

Beta-reducing the following term produces what
result?

(AX.X AY.Y X) Yy

Yy (Az.zy)
Z (Ay.y z)
y (AY.y y)
yy

00w >

57

Quiz #6

Beta-reducing the following term produces what
result?

(AX.X AY.Y X) Yy

A. y (Az.z y)
B. z (Ay.y z)
C. y(Ay.yy)
D. yy

58

Quiz #7

Beta reducing the following term produces what
result?

AX.(AY. Yy Y)W Z

a) AX. WW Z

b) AX. W Z

C)WZ

d) Does not reduce

59

Quiz #7

Beta reducing the following term produces what
result?

AX.(AY. yy)w z

a) AX. ww z

b) AX. W Z

C)WZ

d) Does not reduce

60

Lambda Calc, Impl in OCaml

type i1id = string

"e=X type exp = Var of id
| Ax.e Lam of id * exp
| ee | App of exp * exp
y Var “y”
AX.X Lam (“x”, Var “x”
)\X.)\y.X y Lam (“x”, (Lam(“y”,App (Var “x”, Var “y”))))

App
(AX.Ay-X y) AX.X X (Lam(\\x// , Lam(\\yll ,APP (var\\x// ,Var“y”))) ,

Lam (“x”, App (Var “x”, Var “x”)))

61

Quiz #8

What is this term’s AST? fype id = string

type exp =
Var of id
| Lam of id * exp
Ax X X | App of exp * exp

App (Lam (“x”, Var “x”), Var “x”)
(Var “x”, Var “x”, Var “x”)
Lam (\\xll , App (Var \\xll ,Var \\x,,))
App (Lam (“X”, APP (“X”, \\x”)))

oCowp
-
5

62

Quiz #8

What is this term’s AST? fype id = string

type exp =
Var of id
| Lam of id * exp
Ax X X | App of exp * exp

App (Lam (“x”, Var “x”), Var “x”)
(Var “x”, Var “x”, Var “x”)
Lam (“x”, App (Var “x”,Var “x”))
App (Lam (“x”, App (“x”, “x”)))

oCowp
-
5

63

OCaml Implementation: Substitution

(* substitute e for y in m-- m[y:=€] *)
let rec subst m y e =
match m with

var x ->
if y = x then e (* substitute ¥*)
else m (* don’t subst *)

| App (el,e2) ->
App (subst el y e, subst e2 y e)
| Lam (x,e0) -> ..

64

OCaml Impl: Substitution (cont'd)

(* substitute e for y in m-- m[y:=€] *)
let rec subst m y e = match m with ..
L ->
| -am (x,€0) Shadowing blocks
if y = x then m substitution
else if not (List.mem x (fvs e)) then

Lam (x, subst e0 y e) guf: o capture possible

else Might capture; need to a-convert
let z = newvar() in (* fresh *)

let e0' = subst e0 x (Var z) in
Lam (z,subst e0' y e)

65

CBYV, L-to-R Reduction with Partial Eval

let rec reduce e =
match e with Straight B rule

App (Lam (x,e), e2) -> subst e x eZ2
| App (el,e2) ->

let el' = reduce el in Reduce |hs of app
if el' '= el then App(el',khe2)
else App (el,reduce e2) Reduce rhs of app

| Lam (x,e) -> Lam (x, reduce e)

| _ > e Reduce function body
nothing to do

66

Another Way to Avoid Capture

» Another way to avoid accidental variable
capture is to use the “Barendregt Convention™:
gives everything ‘fresh’ names.

. If every name is unique, no chance of variable
capture

. Simple, but not great for performance as you
have to do it after every beta-reduction!

67

Quick Recap on LC

» Despite its simplicity (3 AST nodes and a handful of
small-step rules), LC is Turing Complete

» Any function that can be evaluated on a Turing
machine can be encoded into LC (and vice-versa)

- But we’ll have to come up with the encodings!

» To prove that it is Turing Complete we have to map
every possible Turing Machine to LC

- We won't be doing that

68

The Power of Lambdas

» To give a sense of how one can encode various
constructs into LC we’ll be looking at some
concrete examples:

e Let bindings

e Booleans

e Pairs

e Natural numbers & arithmetic
e Looping

69

Let bindings

» Local variable declarations are like defining a
function and applying it immediately (once):
e letx=e1ine2 = (Ax.e2)e1

» Example
e let x = (Ay.y) in X X = (AX.X X) (Ay.y)

where
(AX.X X) (Ay.y) — (AX.X X) (Ay.y) — (Ay.y) (Ay.y) — (Ay.y)

70

Booleans

» Church’s encoding of mathematical logic
e frue = AX.Ay.Xx
e false = AX.Ay.y

e if athen b else ¢
> Defined to be the expression: a b ¢

» Examples
e if true then b else c = (AXAy.x) b c — ()\6 i:—>b
o if false then b else c = (Ax.Ay.y)bc — (Ay.y)c — cC

71

Booleans (cont.)

» Other Boolean operations

e not = Ax.x false true
> not x = x false true = if x then false else true
» not true — (Ax.x false true) true — (true false true) — false

e and = Ax.Ay.x y false

» and xy = if x then y else false

e Or = AX.Ay.x truey
» or xy = if x then true else y

» Given these operations
e Can build up a logical inference system

72

Quiz #9

What is the lambda calculus encoding of xor x y?

» XOr true true = xor false false = false
» Xor true false = xor false true = true
» XXY

true = AX.Ay.x

» X (y true false) y
» X (y false true) y

> Y XY

false = AX.Ay.y
ifathenbelsec=abc
not = Ax.x false true

73

Quiz #9

What is the lambda calculus encoding of xor x y?

» XOr true true = xor false false = false
» Xor true false = xor false true = true
» XXY

true = AX.Ay.x

» X (y true false) y
» X (y false true) y

> Y XY

false = AX.Ay.y
ifathenbelsec=abc
not = Ax.x false true

74

Pairs

» Encoding of a pair a, b
e (a,b) = Ax.if xthen a else b
o fst = Af.f true
e snd = Af.f false

» Examples
e fst (a,b) = (Af.f true) (Ax.if x then a else b) —
(Ax.if x then a else b) true —
if true thenaelseb — a
e snd (a,b) = (Af.f false) (Ax.if x then a else b) —
(Ax.if x then a else b) false —
if false thenaelseb — b

75

Natural Numbers (Church* Numerals)

» Encoding of non-negative integers
o 0 =A.Ayy
o 1=MNAy.fy
o 2 =MNAy.f(fy)
o 3 =ANAy.f(f(fy))
l.e., n = AM.Ay.<apply f n times to y>
e Formally: n+1 = Af.Ay.f (nfy)

*(Alonzo Church, of course)

76

Quiz #10 n = M.Ay.<apply f n times to y>

What OCaml type could you give to a Church-
encoded numeral?

» (a->b)->'a->"b
» (‘fa->"a)->'a->"'a
» (‘fa->'a)->"b->int
» (int ->int) -> int -> int

77

Quiz #10 n = M.Ay.<apply f n times to y>

What OCaml type could you give to a Church-
encoded numeral?

» (a->b)->'a->"b
» (‘a->‘a)->‘a->"‘a
» (‘fa->'a)->"b->int
» (int ->int) -> int -> int

78

Operations On Church Numerals

» Successor

e succ = AzZAAYf (z fy) * 0=ALAy.y
o 1 =MAyfy
» Example
e succ 0 =
(Az.MAy.f (2 Ty)) (AMfAYY) —
N.AY.f ((AfAyy) fy) —
AAYT((Ay-y)y) = Since (AX.y)z —y

A.Ay.fy
=1

79

Operations On Church Numerals (cont.)

» IsZero”?
e iszero = Az.z (Ay.false) true
This is equivalent to Az.((z (Ay.false)) true)

» Example
e iszero 0 =
(Az.z (Ay.false) true) (AMf.Ayy) —
(Af.Ay.y) (Ay.false) true —
(Ay.y) true —
true

e 0 =A.Ayy

Since (AX.y)z —y

80

Arithmetic Using Church Numerals

» If M and N are numbers (as A expressions)
e Can also encode various arithmetic operations

» Addition
e M+ N=AMAyMT(Nfy)
Equivalently: + = AMLAN.AFAY.M f (N fy)

» In prefix notation (+ M N)

» Multiplication
e M*N = A.M(NT)
Equivalently: * = AM.AN.AfAY.M (N f) y

> In prefix notation (* M N)

81

Arithmetic (cont.)

. Prove 141 = 2 o 1=A.Ay.fy
o 1+1 = AX.Ay.(1 X) (1 xYy) = * 2= AAE(TY)
o AX.AY.((MAY.fy)x) (1 xy)—
o AXAY.(Ay.xy) (1 xy)—
o AX.Ay.x (1 XYy)—
o AX.Ay.X ((Af.Ay.fy)xy) —
o AXAY.X ((Ay.XYy)y) —
o AXAy.X (Xy) =2

» With these definitions
e Can build a theory of arithmetic

82

Arithmetic Using Church Numerals

» What about subtraction?
e Easy once you have ‘predecessor’, but...
e Predecessor is very difficult!

» Story time:

e One of Church’s students, Kleene (of Kleene-star
fame) was struggling to think of how to encode
‘predecessor’, until it came to him during a trip to the
dentists office.

e Take from this what you will

» Wikipedia has a great derivation of
‘predecessor’, not enough time today.

83

Looping+Recursion

» So far we have avoided self-reference, so how
does recursion work?

» We can construct a lambda term that ‘replicates’
itself:
e Define D = Ax.x X, then
e DD = (AxXxX)(AXXX)— (AXXX)(Axxx)=DD
e D D is an infinite loop

» We want to generalize this, so that we can make
use of looping

84

The Fixpoint Combinator

Y = M.(AX.f (X X)) (AX.T (X X))

» Then
YF=
(Af.(AX.T (X X)) (AX.f (X X))) F —
(AX.F (x X)) (AX.F (x X)) —
F ((AX.F (x x)) (AX.F (x x)))
=F(YF)
» Y F is a fixed point (aka fixpoint) of F
» ThusYF=F(YF)=F(F(YF))=...

e \We can use Y to achieve recursion for F

85

Example

fact = AM.An.if n = 0 then 1 else n * (f (n-1))

e The second argument to fact is the integer
e The first argument is the function to call in the body

» We'll use Y to make this recursively call fact

(Y fact) 1 = (fact (Y fact)) 1
— if 1 =0then 1 else 1 * ((Y fact) 0)

—

—
—

1 * ((Y fact) 0)
1 * (fact (Y fact) 0)
1*(if0=0then 1 else 0" ((Y fact) (-1))

/*1_)1

86

Factorial 4=

(Y G) 4
G (Y G) 4

(Ar.An.(if n = @ then 1 elsen X (r (n-1)))) (Y G) 4
(An.(if n = @ then 1 else n X ((Y G) (n-1)))) 4
if 4 = 0 then 1 else 4 X ((Y G) (4-1))

4

S S S T T s Sl T S ST R S

X X X X X X X X X X X X X

(G (Y G) (4-1))

((An. (1, if n = 0; else n X ((Y G) (n-1)))) (4-1))

(1, if 3 = 0; else 3 X ((Y G) (3-1)))

(G (Y G) (3-1)))

((An.(1, if n = 0; else n X ((Y G) (n-1)))) (3-1)))

(1, if 2 = 9; else 2 X ((Y G) (2-1))))

(G (Y G) (2-1))))

((An.(1, if n = 9; else n X ((Y G) (n-1)))) (2-1))))
(1, if 1 = 0; else 1 X ((Y G) (1-1)))))

(3
(3
(3
(3
(3
(3
(3
(3
(3
(3

X X X X X X X X X X

(2
(2
(2
(2
(2
(2
(2

X X X X X X X

(1
(1
(1
(1

X (G (Y G) (1-1)))))

X ((An.(1, if n = 9; elsen X ((Y G) (n-1)))) (1-1)))))
X (1, if @ = 9; else @ X ((Y G) (©-1))))))

x (1))))

87

Discussion

» Lambda calculus is Turing-complete
e Most powerful language possible

e Can represent pretty much anything in “real” language
» Using clever encodings

» But programs would be
e Pretty slow (10000 + 1 — thousands of function calls)
e Pretty large (10000 + 1 — hundreds of lines of code)
e Pretty hard to understand (recognize 10000 vs. 9999)
» In practice
e \We use richer, more expressive languages
e That include built-in primitives

88

The Need For Types

» Consider the untyped lambda calculus
e false = AX.Ay.y
e 0 =AXAyy
» Since everything is encoded as a function...

e \We can easily misuse terms...
> false 0 — Ay.y
> if O then ...

...because everything evaluates to some function

» The same thing happens in assembly language
e Everything is a machine word (a bunch of bits)
e All operations take machine words to machine words

89

Simply-Typed Lambda Calculus (STLC)

»re=n|x|Axtel|ee
e Added integers n as primitives

» Need at least two distinct types (integer & function)...
» ...to have type errors

e Functions now include the type t of their argument

»ti=int|t—t
e int is the type of integers

e {1 — 12 is the type of a function
» That takes arguments of type t1 and returns result of type t2

90

Types are limiting

» STLC will reject some terms as ill-typed, even if
they will not produce a run-time error
e Cannot type check Y in STLC

> Or in OCaml, for that matter, at least not as written earlier.
» Surprising theorem: All (well typed) simply-typed
lambda calculus terms are strongly normalizing

e A normal form is one that cannot be reduced further
> A value is a kind of normal form

e Strong normalization means STLC terms always
terminate

» Proof is not by straightforward induction: Applications
“‘increase” term size

91

Summary

» Lambda calculus is a core model of computation

e \We can encode familiar language constructs using
only functions

» These encodings are enlightening — make you a better
(functional) programmer

» Useful for understanding how languages work

e |deas of types, evaluation order, termination, proof
systems, etc. can be developed in lambda calculus,
» then scaled to full languages

92

