
CMSC 330: Organization of Programming
Languages

Ownership, References, and Lifetimes
in Rust

CMSC 330 - Fall 2021

Rust: GC-less Memory Management, Safely

• Rust’s heap memory managed without GC
• Type checking ensures no dangling pointers or buffer

overflows
– unsafe idioms are disallowed

• Key features that ensure safety: ownership and lifetimes
– Data has a single owner. Immutable aliases OK, but mutation

only via owner or single mutable reference
– How long data is alive is determined by a lifetime

CMSC 330 - Fall 2021

Rules of Ownership

1. Each value in Rust has a variable that’s its owner
2. There can only be one owner at a time
3. When the owner goes out of scope, the value will be

dropped (freed)

CMSC 330 - Fall 2021

{ let mut s = String::from("hello"); //s is the owner
s.push_str(", world!");
println!("{}", s);

} //s’s data is freed by calling s.drop()

String: Dynamically sized, mutable data

Assignment Transfers Ownership

• By default, an assignment moves data

• A move leaves only one owner: y

• Why? Both x and y may point to the same underlying data

let x = String::from("hello");
let y = x; //x moved to y

Move prevents double
free, or use-after-free

CMSC 330 - Fall 2021

println!("{}, world!", y); //ok
println!("{}, world!", x); //fails

x’s data

y’s data

"hello"

Copy Trait

• Primitives do not transfer ownership on assignment
– i32, char, bool, f32, tuples of these types, etc.

• Why? These derive the Copy trait
– Doing so says that an assignment copies the entire object

CMSC 330 - Fall 2021

let x = 5;
let y = x;
println!("{} = 5!", y); //ok
println!("{} = 5!", x); //ok

CMSC 330 - Fall 2021

Traits

• A Trait is a way of saying that a type has a particular property
– Copy: objects with this trait do not transfer ownership on assignment

• instead, assignment copies all of the object data
– Move: objects with this trait do transfer ownership on assignment

• usually, so that not all of the data need be copied

• Another way of using traits: to indicate functions that a type is
must implement (more later)
– Like Java interfaces
– Example: Deref built-in trait indicates that an object can be

dereferenced via * op; compiler calls object’s deref() method

CMSC 330 - Fall 2021

Use clone() to make explicit copies

• Objects with the Move trait may be explicitly cloned
– Avoids loss of ownership, but at the cost of a copy

let x = String::from("hello");
let y = x.clone(); //x ownership not moved
println!("{}, world!", y); //ok
println!("{}, world!", x); //ok

CMSC 330 - Fall 2021

Ownership Transfer in Function Calls

• On a call, ownership passes from:
– argument to called function’s parameter
– returned value to caller’s receiver

fn main() {
let s1 = String::from(“hello”);
let s2 = id(s1); //s1 moved to arg
println!(“{}”,s2); //id’s result moved to s2
println!(“{}”,s1); //fails

}

fn id(s:String) -> String {
s // s moved to caller, on return
}

CMSC 330 - Fall 2021

References and Borrowing
• Create an alias by making a reference

– An explicit, non-owning pointer to the original value
– Called borrowing. Done with & operator

• References are immutable by default (can override)
fn main() {
let s1 = String::from(“hello”);
let len = calc_len(&s1); //lends reference
println!(“the length of ‘{}’ is {}”,s1,len);
}
fn calc_len(s: &String) -> usize {
s.push_str(“hi”); //fails! refs are immutable
s.len() // s dropped; but not its referent
}

CMSC 330 - Fall 2021

A. x
B. y
C. z
D. w

fn foo(str:String) -> usize {
let x = str;
let y = &x;
let w = &y;
// HERE

}

Quiz 1: Owner of str’s data at HERE ?

CMSC 330 - Fall 2021

let w = &y vs. let w = y;
There are a few other types I'd consider "primitive":
• Immutable references (&T)
• Mutable references (&mut T)
• Raw pointers (*const T / *mut T)
Immutable references always implement Copy, mutable
references never implement Copy, and raw pointers always
implement Copy:

A. x
B. y
C. z
D. w

fn foo(str:String) -> usize {
let x = str;
let y = &x;
let w = &y;
// HERE

}

Quiz 1: Owner of str’s data at HERE ?

CMSC 330 - Fall 2021

Rules of References

1. At any given time, you can have either but not both of
– One mutable reference
– Any number of immutable references

2. References must always be valid (pointed-to value not
dropped)

CMSC 330 - Fall 2021

Borrowing and Mutation
• Make immutable references to mutable values

– Shares read-only access through owner and borrowed
references

• Same for immutable values
– Mutation disallowed on original value until borrowed

reference(s) dropped

{ let mut s1 = String::from(“hello”);
{ let s2 = &s1;
println!("String is {} and {}",s1,s2); //ok
s1.push_str(" world!"); //disallowed

} //drops s2
s1.push_str(" world!"); //ok
println!("String is {}",s1);}//prints updated s1

CMSC 330 - Fall 2021

Mutable references
• To permit mutation via a reference, use &mut

– Instead of just &
– But only OK for mutable variables

let mut s1 = String::from(“hello”);
{ let s2 = &s1;
s2.push_str(“ there”);//disallowed; s2 immut

} //s2 dropped
let s3 = &mut s1; //ok since s1 mutable
s3.push_str(“ there”); //ok since s3 mutable
println!(”String is {}”,s3); //ok

CMSC 330 - Fall 2021

A. “Hello!”
B. “Hello! World!”
C. Error
D. “Hello!World!”

{ let mut s1 = String::from(“Hello!“);
{
let s2 = &s1;
s2.push_str(“World!“);
println!(“{}“, s2)

}
}

Quiz 2: What does this evaluate to?

CMSC 330 - Fall 2021

A. “Hello!”
B. “Hello! World!”
C. Error; s2 is not mut
D. “Hello!World!”

{ let mut s1 = String::from(“Hello!“);
{
let s2 = &s1;
s2.push_str(“World!“);
println!(“{}“, s2)

}
}

Quiz 2: What does this evaluate to?

CMSC 330 - Fall 2021

A. 0
B. 8
C. Error
D. 5

fn foo(s: &mut String) -> usize{
s.push_str("Bob");
s.len()

}
fn main() {

let mut s1 = String::from("Alice");
println!("{}",foo(&mut s1))

}

Quiz 3: What is printed?

CMSC 330 - Fall 2021

A. 0
B. 8
C. Error
D. 5

fn foo(s: &mut String) -> usize{
s.push_str("Bob");
s.len()

}
fn main() {

let mut s1 = String::from("Alice");
println!("{}",foo(&mut s1))

}

Quiz 3: What is printed?

CMSC 330 - Fall 2021

Ownership and Mutable References

• Can make only one mutable reference
• Doing so blocks use of the original

– Restored when reference is dropped

let mut s1 = String::from(“hello”);
{ let s2 = &mut s1; //ok
let s3 = &mut s1; //fails: second borrow
s1.push_str(“ there”); //fails: second borrow

} //s2 dropped; s1 is first-class owner again
s1.push_str(“ there”); //ok
println!(”String is {}”,s1); //ok

implicit borrow
(self is a reference)

CMSC 330 - Fall 2021

But: see
next slide

Update: Non Lexical Lifetimes (NLL)

• Rust has been updated to support lifetimes that end
before the surrounding scope:
– http://blog.pnkfx.org/blog/2019/06/26/breaking-news-non-lexical-

lifetimes-arrives-for-everyone/

let mut s1 = String::from(“hello”);
{ let s2 = &mut s1; //ignored – never used
let s3 = &mut s1; //ignored – never used
s1.push_str(“ there”); //OK!
s2.push_str(“ there”); //fails – 2 mutable refs

} //s2 dropped; s1 is first-class owner again
s1.push_str(“ there”); //ok
println!(”String is {}”,s1); //ok

CMSC 330 - Fall 2021

http://blog.pnkfx.org/blog/2019/06/26/breaking-news-non-lexical-lifetimes-arrives-for-everyone/

The * Operator
• Given a value of type T& (or T&mut) use the * operator

to read or write its underlying contents

– Note two uses of mut for r, with different meanings!

CMSC 330 - Fall 2021

let mut x = 2;
let mut y = 3;
let mut r = &mut x;
*r = 4;
r = &mut y;
*r = 5;

Immutable and Mutable References

• Cannot make a mutable reference if immutable
references exist
– Holders of an immutable reference assume the object will not

change!

let mut s1 = String::from(“hello”);
{ let s2 = &s1; //ok: s2 is immutable
let s3 = &s1; //ok: multiple imm. refs allowed
let s4 = &mut s1; //fails: imm ref already

} //s2-s4 dropped; s1 is owner again
s1.push_str(“ there”); //ok
println!(”String is {}”,s1); //ok

CMSC 330 - Fall 2021

Aside: Generics and Polymorphism

• Rust has support like that of Java and OCaml
– Example: The std library defines Vec<T> where T can be

instantiated with a variety of types
• Vec<char> is a vector of characters
• Vec<&str> is a vector of string slices

• You can define polymorphic functions, too
– Rust:
– Java:
– Ocaml:

• More later…

fn id<T>(x:T) -> T { x }

let id x = x

static <T> T id(T x) { return x; }

CMSC 330 - Fall 2021

Lifetimes: Avoiding Dangling References

• References must always be to valid memory
– Not to memory that has been dropped

– Rust will disallow this using a concept called lifetimes
• A lifetime is a type-level parameter that names the scope in which the data

is valid

fn main() {
let ref_invalid = dangle();
println!(“what will happen … {}”,ref_invalid);

}
fn dangle() -> &String {
let s1 = String::from(“hello”);
&s1

} // bad! s1’s value has been dropped

CMSC 330 - Fall 2021

Lifetimes: OK Usage

• Lifetime corresponds with scope

• Variable x in scope while r is
– A lifetime is a type variable that identifies a scope
– r’s lifetime ‘a exceeds x’s lifetime ‘b

{
let r = 5;
{
let x = &r;
println!(“r: {}”,r); //ok

}

}

x’s lifetime ‘b
r’s lifetime ‘a

OK:
x ⟵ r and ‘b ≤ ‘a

CMSC 330 - Fall 2021

Lifetimes: Preventing Dangling Refs

• Slightly changing the example

• Variable x goes out of scope while r still exists
– r’s lifetime ‘a exceeds x’s lifetime ‘b so not safe to assign x to r

{
let r; // deferred init
{
let x = 5;
r = &x;

}
println!(“r: {}”,r); //fails

}

x’s lifetime ‘b
r’s lifetime ‘a

Not OK:
r ⟵ x but ‘a ≰ ‘b

CMSC 330 - Fall 2021

A. dog
B. hi
C. Error – y is immutable
D. Error – y dropped while still borrowed

{ let mut s = &String::from("dog");
{

let y = String::from("hi");
s = &y;

}
println!("s: {}",s);

}

Quiz 4: What is printed?

CMSC 330 - Fall 2021

Quiz 4: What is printed?

{ let mut s = &String::from("dog");
{

let y = String::from("hi");
s = &y;

}
println!("s: {}",s);

}

A. dog
B. hi
C. Error – y is immutable
D. Error – y dropped while still borrowed

CMSC 330 - Fall 2021

Lifetimes and Functions

• Lifetime of a reference not always explicit
– E.g., when passed as an argument to a function

– What could go wrong here?

fn longest(x:&str, y:&str) -> &str {
if x.len() > y.len() { x } else { y }

}

{ let x = String::from(“hi”);
let z;
{ let y = String::from(“there”);
z = longest(&x,&y); //will be &y

} //drop y, and thereby z
println!(“z = {}”,z);//yikes!

}

String slice
(more later)

CMSC 330 - Fall 2021

Lifetime Parameters
• Each reference to a value of type t has a lifetime parameter

– &t (and &mut t) – lifetime is implicit
– &’a t (and &’a mut t) – lifetime ‘a is explicit

• Where do the lifetime names come from?
– When left implicit, they are generated by the compiler
– Global variables have lifetime ‘static

• Lifetimes can also be generic

– Thus: x and y must have the same lifetime, and the returned
reference shares it

fn longest<‘a>(x:&‘a str, y:&‘a str) -> &‘a str {
if x.len() > y.len() { x } else { y }

}

CMSC 330 - Fall 2021

Lifetimes FAQ
• When do we use explicit lifetimes?

– When more than one var/type needs the same lifetime (like
the longest function)

• How do I tell the compiler exactly which lines of code
lifetime 'a covers?
– You can't. The compiler will (always) figure it out

CMSC 330 - Fall 2021

Lifetimes FAQ
• How does lifetime subsumption work?

– If lifetime 'a is longer than 'b, we can use 'a where 'b is
expected; can require this with 'b: 'a.

• Permits us to call longest(&x,&y) when x and y have different
lifetimes, but one outlives the other

– Just like subtyping/subsumption in OO programming

• Can we use lifetimes in data definitions?
– Yes; we will see this later when we define structs,
enums, etc.

CMSC 330 - Fall 2021

Recap: Rules of References

1. At any given time, you can have either but not both of
– One mutable reference
– Any number of immutable references

2. References must always be valid
– A reference must never outlive its referent

CMSC 330 - Fall 2021

