
CMSC 330: Organization of Programming
Languages

Strings, Slices, Vectors, HashMaps
in Rust

Copyright © 2018 Michael Hicks, the University of Maryland. Some material based on
https://doc.rust-lang.org/book/second-edition/index.html

CMSC 330 -Fall 2021

String Representation

• Rust’s String is a 3-tuple
– A pointer to a byte array (interpreted as UTF-8)
– A (current) length
– A (maximum) capacity Always: length ≤ capacity

CMSC 330 -Fall 2021

String pointed-to data is
dropped when the owner is

String Representation

• Rust’s String is a 3-tuple
– A pointer to a byte array (interpreted as UTF-8)
– A (current) length
– A (maximum) capacity

• Always: length ≤ capacity

CMSC 330 -Fall 2021

let mut s = String::new();
println!("{}", s.capacity());
for _ in 0..5 {

s.push_str("hello");
println!("{},{}",

s.len(),s.capacity());
}

Prints

0
5,5
10,10
15,20
20,20
25,40

Code

UTF-8 and Rust Strings

• UTF-8 is a variable length character encoding
– The first 128 characters (US-ASCII) need one byte
– The next 1,920 characters need two bytes, which covers the

remainder of almost all Latin-script alphabets, … up to 4 bytes

• You may not index a string directly; Rust stops you
– You could end up in the middle of a character!

let s1 = String::from("hello");
let h = s1[0]; // rejected

CMSC 330 -Fall 2021

Slices: Motivation

• Suppose we want the first word of a string
• Here’s how we might do it in OCaml

• String.sub allocates new memory and copies the sub-
string’s contents
– This is a waste (especially with a large string) if both s and its

substring are to be treated as immutable

let first_word s =
try

let i = String.index s ' ' in
String.sub s 0 i

with Not_found -> s

CMSC 330 -Fall 2021

Slice: Shared Data, Separate Metadata

• What we want is to have
both strings share the
same underlying data

• Happily, Rust’s
containers permit a way
to reference a portion of
an object’s contents
– These are called slices

CMSC 330 -Fall 2021

String slice

String

String Slices in Rust
• If s is a String, then &s[range] is a string slice, where
range can be as follows
– i..j is the range from i to j, inclusive
– i.. is the range from i to the current length
– ..j is the range from 0 to j
– .. is the range from 0 to the current length

• &str is the type of a String slice

CMSC 330 -Fall 2021

String Slice Example
• Here’s first_word in Rust, using slices:

– If we used s.as_bytes() we could end up examining one byte
of a multi-byte character, due to the UTF-8 encoding

CMSC 330 -Fall 2021

pub fn first_word (s: &String) -> &str {
for (i, item) in s.char_indices() {

if item == ' ' {
return &s[0..i];

}
}
s.as_str()

}

String Slices and Ownership
• A &str slice borrows from the original string

– Just like an immutable String reference
– This prevents dangling pointers

• Recall borrowing rules:

CMSC 330 -Fall 2021

let mut s = String::from("hello world");
let word = first_word(&s); //borrow
s.clear(); // Error! Can’t take mut ref

let b = &s[..];
let c = &s[..];
print!("{}{}", b, c);

let b = &mut s[..];
let c = &mut s[..]; //error
print!("{}{}", b, c);

• Multiple immutable refs, or
• Only one mutable ref (no immut ones)

Quiz 1: What is the output?

let s = String::from("Rust is fun!");
let h = &s[0..4];
println!("{}",h);

CMSC 330 -Fall 2021

A. Rust
B. is
C. fun!
D. Type Error

Quiz 1: What is the output?

let s = String::from("Rust is fun!");
let h = &s[0..4];
println!("{}",h);

CMSC 330 -Fall 2021

A. Rust
B. is
C. fun!
D. Type Error

String Slices are (should be) the Default

• String literals are slices

– Variable s is not the owner of this string data
• the compiler establishes a static owner to permit free immutable sharing

– Strings do own their data; useful if you want to modify it

• Should use slices where possible
– E.g., earlier example: fn first_word(s:&str) -> &str

• Can convert String s to a slice via &s[..]. Oftentimes, this coercion is
done automatically (due to Deref trait)

CMSC 330 -Fall 2021

let s:&str = "hello world";

Useful String Operations
• push_str(&mut self, string: &str)

– string argument is a slice, so doesn’t take ownership, while
self is a mutable reference, implying it is the only one

• What’s wrong with this example?

– Compiler complains
• cannot borrow s as mutable more than once at a time

– How to fix? Put push_str calls in separate lets
• Reference: https://doc.rust-lang.org/book/ch08-02-strings.html

https://doc.rust-lang.org/std/string/struct.String.html
CMSC 330 -Fall 2021

let mut s = String::from("abc");
let (a, b) = (s.push_str("def"), s.push_str("ghi"));

Quiz 2: What is the output?
let mut s1 = String::from("Hello");
let s2 = " World";
s1.push_str(s2);
print!("{}",s2);

CMSC 330 -Fall 2021

A. World
B. Hello World
C. Error because s2 transferred the ownership

Quiz 2: What is the output?
let mut s1 = String::from("Hello");
let s2 = " World";
s1.push_str(s2);
print!("{}",s2);

CMSC 330 -Fall 2021

A. World. push_str() function does not take the ownership of the parameter

B. Hello World
C. Error because s2 transferred the ownership

Quiz 3: What is the output?
let s1 = String::from(”CMSC");
let s3; //deferred init
{

let s2 = String::from(”330");
s3 = s1+&s2;

}
print!("{}",s3);
print!("{}",s1);

CMSC 330 -Fall 2021

A. CMSC330
B. CMSC
C. CMSC330CMSC
D. Error.

Quiz 3: What is the output?
let s1 = String::from(”CMSC");
let s3; //deferred init
{

let s2 = String::from(”330");
s3 = s1+&s2;

}
print!("{}",s3);
print!("{}",s1);

CMSC 330 -Fall 2021

A. CMSC330
B. CMSC
C. CMSC330CMSC
D. Error. s1 lost ownership

Vectors: Basics
• Vec<T> in Rust is Arraylist<T> in Java

• Indexing can fail (panic) or return an Option

{ let mut v:Vec<i32> = Vec::new();
v.push(1); // adds 1 to v
v.push(“hi”); //error – v contains i32s
let w = vec![1, 2, 3]; //vec! is a macro

} // v,w and their elements dropped

let v = vec![1, 2, 3, 4, 5];
let third:&i32 = &v[2]; //panics if OOB
let third:Option<&i32> = v.get(2); //None if OOB

https://doc.rust-lang.org/book/second-edition/ch08-01-vectors.html

CMSC 330 -Fall 2021

Aside: Options
• Option<T> is an enumerated type, like an OCaml variant

– Some(v) and None are possible values

• We’ll see more about enumerated types later
– For now, follow your nose

let v = vec![1, 2, 3, 4, 5];
let third: Option<&i32> = v.get(2);
let z =
match third {
Some(i) => Some(i+1), //matches here
None => None

};

CMSC 330 -Fall 2021

Vectors: Updates and Iteration

– If we remove the {} block around the def of p, above, then the
code fails

• Not allowed to print via a while mutable borrow p is out

– Iterator variable can be mutable or immutable:

let mut a = vec![10, 20, 30, 40, 50];
{ let p = &mut a[1]; //mutable borrow

*p = 2; //updates a[1]
}//ownership restored
println!("vector contains {:?}",&a);

let mut v = vec![100, 32, 57];
for i in &v { println!("{}", i); }
for i in &mut v { *i += 50; }

CMSC 330 -Fall 2021

Vector and Strings
• Like Strings, vectors can have slices

• Strings implemented internally as a Vec<u8>
– But: don’t mess with the byte-level representation of UTF-8

strings.

let a = vec![10, 20, 30, 40, 50];
let b = &a[1..3]; //[20,30]
let c = &b[1]; //30
println!("{}",c); //prints 30

CMSC 330 -Fall 2021

HashMaps
• HashMap<K,V> has the expected methods (roughly – see

manual for gory details)
– new : () -> HashMap<K,V>
– insert : (K,V) -> Option<V>
– get : (&K) -> Option<&V>

• See also
– get_mut, entry, and or_insert

https://doc.rust-lang.org/std/collections/struct.HashMap.html
https://doc.rust-lang.org/book/second-edition/ch08-03-hash-maps.html

CMSC 330 -Fall 2021

Quiz 4: What is the output?
use std::collections::HashMap;
fn main(){

let mut h = HashMap::new();
h.insert("Alice", "1");
h.insert("Bob", "2");
match h.get(&”Alice") {

Some(&id) => println!(”Alice:{}",id),
_ => println!("Not Found"),

}
}

CMSC 330 -Fall 2021

A. Alice:1
B. Not Found
C. Error

Quiz 4: What is the output?
use std::collections::HashMap;
fn main(){

let mut h = HashMap::new();
h.insert("Alice", "1");
h.insert("Bob", "2");
match h.get(&”Alice") {

Some(&id) => println!(”Alice:{}",id),
_ => println!("Not Found"),

}
}

CMSC 330 -Fall 2021

A. Alice:1
B. Not Found
C. Error

