
CMSC 330: Organization of Programming
Languages

Closures and Iterators
In Rust

CMSC 330 - Fall 2021

Using Closures/Functions Locally

• Rust has local functions, and closures

• OCaml local functions/closures

fn moveit(l:bool,x:i32) -> i32 {
let left = |x| x - 1;
fn right(x:i32) -> i32 { x+1 };
if l { left(x) }
else { right(x) }

}

let moveit l x =
let left = fun x -> x - 1 in
let right = fun x -> x + 1 in
if l then left x
else right x

Closure (may
have an
environment)

Local function
(no
environment)

CMSC 330 - Fall 2021

Limits of Type Inference

• Rust infers non-polymorphic types

• OCaml infers polymorphic types

• More details on closures at the end, including polymorphism
– Now for something (not so completely) different

let id = |x| x;
let x = id(1); //infers x:i32
let y = id("hi"); //fails: &str ≠ i32

let f = fun x -> x in (* ‘a -> ‘a *)
let x = id 1 in
let y = id "hi" in (* OK *) …

CMSC 330 - Fall 2021

Iteration using the Iterator Trait

• Recall an earlier example:

• The iter() method returns an iterator, i.e., a value with the
Iterator trait

CMSC 330 - Fall 2021

let a = vec![10, 20, 30, 40, 50];
for e in a.iter() {
println!("the value is: {}", e);

}

trait Iterator {
type Item; //this is an associated type
fn next(&mut self) -> Option<Self::Item>;
… //default method impls

}

Unpacking the for syntax

• Each call to next advances the iterator
– So it has to be mut

• calls to next produce immutable references to the values
in a
– else may call into_iter or iter_mut on a to get different

sorts of references
CMSC 330 - Fall 2021

let a = vec![10, 20];
let mut iter = a.iter();
assert_eq!(iter.next(), Some(&10));
assert_eq!(iter.next(), Some(&20));
assert_eq!(iter.next(), None);

Iterator Adaptors

• We can make one iterator from another
– An iterator is consumed as it used; it is lazy

• This is a pattern for higher order programming
– i.map(f) produces an iterator returning f(e) for each of i’s

elements e
– i.filter(f) produces iterator for i’s elements e such that
f(e) == true

– i.collect() converts an iterator into a vector
– i.fold(a,f) is like OCaml’s fold_right

• fold_right f a v where v is the list corresponding to i
– zip, sum, …

CMSC 330 - Fall 2021

Examples

let a = vec![10,20];
let i = a.iter();
let j = i.map(|x| x+1).collect();
//[11,21]
let k = a.iter().fold(0,|a,x| x-a); //10
for e in a.iter().filter(|&&x| x == 10) {
println!("{}",e);

} //prints 10

CMSC 330 - Fall 2021

Quiz 1: Output of the following code
fn main(){
let a = [0, 1, 2, 3, 4, 5];
let mut iter2 = a.iter().map(|x| 2 * x);
iter2.next();
let t2 = iter2.next();
println!("{:?}", t2)

}

A. Some(0)
B. Some(1)
C. Some(2)
D. Some(4)

CMSC 330 - Fall 2021

Quiz 1: Output of the following code
fn main(){
let a = [0, 1, 2, 3, 4, 5];
let mut iter2 = a.iter().map(|x| 2 * x);
iter2.next();
let t2 = iter2.next();
println!("{:?}", t2)

}

A. Some(0)
B. Some(1)
C. Some(2)
D. Some(4)

CMSC 330 - Fall 2021

Iterator Notes

• You can make your own iterators too
– Implement the Iterator trait
– Several examples in the Rust Book

• Iterators perform extremely well
– Better that for loops with explicit indexes!
– This is because Rust aggressively optimizes the code it

generates, e.g., by unrolling the iteration loop
– So feel free to program using map, fold, zip, etc.

CMSC 330 - Fall 2021

Iter Example

CMSC 330 - Fall 2021

struct Fibonacci {
curr: u32,
next: u32,

}

impl Iterator for Fibonacci {
type Item = u32;
fn next(&mut self) -> Option<Self::Item> {

let new_next = self.curr + self.next;
self.curr = self.next;
self.next = new_next;

if self.curr < 100 {
Some(self.curr)

}else{
return None

}
}

}
fn fibonacci() -> Fibonacci {

Fibonacci { curr: 0, next: 1 }
}

fn main() {
println!("The first 15 terms of the Fibonacci seq:");
for i in fibonacci().take(15) {

print!("{},", i);
}

println!("\nfrom 5th, the next 3 terms of the Fibonacci seq:");
for i in fibonacci().skip(4).take(3){

print!("{},", i);
}
println!()

}

Back to Closures: Passing as Arguments

• Each closure has a distinct type
– Even if two closures have the same signature, their types are

considered different
• Such types are called generative types

• To specify the type of a closure (for a function parameter,
say), use generics with trait bounds
– Fn t (will describe later)
– FnMut t
– FnOnce t

• Functions (defined with fn f…) implement the above trait
bounds too

CMSC 330 - Fall 2021

Using the Fn Trait

– But cannot write

• Can also use function trait bounds in struct,
enum, etc. definitions

fn app_int<T>(f:T,x:i32) -> i32
where T:Fn(i32) -> i32

{
f(x)}

fn main() {
println!(“{}”,app_int((|x| x-1),1));

}

Trait bound on T to
specify type of f

fn app_int(f:(i32) -> i32,x:i32) -> i32
{ f(x) }

CMSC 330 - Fall 2021

Using the Fn Trait Polymorphically
fn app<T,U,W>(f:T,x:U) -> W

where T:Fn(U) -> W
{

f(x)
}
fn main() {

println!("{}",app((|x| x-1),1));//i32
let s = String::from("hi ");
println!("{}",app(|x| x+"there",s));//String

}

CMSC 330 - Fall 2021

Capturing Free Variables

– Note: fails if equal_to_x defined as a local function
• Local functions do not have an environment

• Complication: What if x is owned?
– Capturing it could move it or borrow (mut or immut)
– Use various FnX traits to specify what to do

fn main() {
let x = 4;
let equal_to_x = |z| z == x;
let y = 4;
assert!(equal_to_x(y))

} // true

Closure
env
captures x

CMSC 330 - Fall 2021

Distinguishing Fn Trait Bounds
• FnOnce t (where t is a func type)

– Consumes the variables it captures from its enclosing scope (i.e.,
moves or copies them)

– Thus can only be called once
• The call consumes ownership

• FnMut t
– Borrows captured variables mutably

• Fn t
– Borrows captured variables immutably, or copies

• equal_to_x copied x due to its Copy trait
– Try this bound first; follow the compiler’s advice if it doesn’t work

CMSC 330 - Fall 2021

Example use of FnOnce

let x = String::from("hi");
let add_x = |z| x+z; //captures x; is FnOnce
println!("x = {}",x); //fails
let s = add_x(" there");//consumes closure
let t = add_x(" joe");//fails, add_x consumed

CMSC 330 - Fall 2021

