CMSC 330: Organization of Programming
Languages

Closures and lterators
In Rust

CMSC 330 - Fall 2021

Using Closures/Functions Locally

 Rust has local functions, and closures

Closure (may

fn moveit(l:bool,x:132) -> i32 {

}

have an

let left = |x| x - 1, =

fn right(x:132) -> i32 { x+1 };
if 1 { left(x) }

else { right(x) }

y

— environment)

~~ Local function
(no

environment)

« OCaml local functions/closures

CMSC 330 - Fall 2021

let moveit 1 x =

let left = fun x -> x - 1 in
let right = fun x -> x + 1 in
if 1 then left x

else right x

Limits of Type Inference

* Rust infers non-polyrymhic\types

let id = |x| x; \
let x id(l); //infers x:i32
let y id("hi"); //fails: &str # i32

« OCaml infers polymorphic types

let £ = fun x -> x in (* ‘a -> ‘a ¥*)
let x = id 1 in
let y = id "hi" in (* OK *) ..

* More details on closures at the end, including polymorphism
— Now for something (not so completely) different

CMSC 330 - Fall 2021

Iteration using the Iterator Trait

« Recall an earlier example:
let a = vec![10, 20, 30, 40, 5071,
for e in a.iter () {

println! ("the value is: {}", e);

}

« The iter () method returns an iterator, i.e., a value with the
Iterator trait

trait Iterator {
type Item; //this is an associated type
fn next (&mut self) -> Option<Self::Item>;
.. //default method impls

}

CMSC 330 - Fall 2021

Unpacking the for syntax

« Each call to next advances the iterator
— So it has to be mut

let a = vec![10, 20];

let mut iter = a.iter () ;
assert eq! (iter.next (), Some (&1l0));
assert eq! (iter.next (), Some (&20)) ;
assert eq! (iter.next (), None);

 calls to next produce immutable references to the values
In a
— else may call into iter or iter mut on a to get different
sorts of references B

CMSC 330 - Fall 2021

Iterator Adaptors

« \We can make one iterator from another
— An iterator is consumed as it used; it is lazy

* This is a pattern for higher order programming

— i.map (£) produces an iterator returning £ (e) for each of i's
elements e

- i.filter (£) produces iterator for i's elements e such that
f (e) == true
— i.collect () converts an iterator into a vector
- i.fold(a, £) islike OCaml’s fold right
« fold right £ a v where v is the list co?responding toi
— zip, sum, ...

CMSC 330 - Fall 2021

Examples

let a = vec![10,20];
let 1 = a.iter (),
let j = i.map(|x| x+1) .collect();

//[11,21]
let k = a.iter() .fold(0, |a,x| x-a); //10
for e in a.iter () .filter (| &&x| x == 10) {

println! ("{}",e);
} //prints 10

CMSC 330 - Fall 2021

Quiz 1: Output of the following code

fn main () {
let a = [0, 1, 2, 3, 4, 5];
let mut iter2 = a.iter() .map(|x| 2 * x);
iter2.next () ;
let t2 = iter2.next();
println! ("{:?}", t2)

oo w>
n
@)
3
¢)

CMSC 330 - Fall 2021

Quiz 1: Output of the following code

fn main () {
let a = [0, 1, 2, 3, 4, 5];
let mut iter2 = a.iter() .map(|x| 2 * x);
iter2.next () ;
let t2 = iter2.next();
println! ("{:?}", t2)

CoOwx
»n
o
3
/-\A/C-D\/-\

CMSC 330 - Fall 2021

lterator Notes

* You can make your own iterators too
— Implement the Iterator trait
— Several examples in the Rust Book

* lterators perform extremely well
— Better that for loops with explicit indexes!

— This is because Rust aggressively optimizes the code it
generates, e.g., by unrolling the iteration loop

— So feel free to program using map, fold, zip, etc.

CMSC 330 - Fall 2021

Iter Example

struct Fibonacci {
curr: u3Zz,
next: u3Z,

}

impl Iterator for Fibonacci {
type Item = u32;

fn next(&mut self) -> Option<Self::Item> {
let new_next = self.curr + self.next;

self.curr = self.next;
self.next = new_next;

if self.curr < 100 {
Some(self.curr)
}else{
return None

¥
}

fn fibonacci() -> Fibonacci {
Fibonacci { curr: @, next: 1 }
}

CMSC 330 - Fall 2021

fn main() {
prlntlnl('The first 15 terms of the Fibonacci seq:");

for i in f1bonacc1() take(15) {
print!("{},", 1);
}

prlntlnl("\nfrom 5th, the next 3 terms of the Fibonacci seq:");
for i in f1bonacc1() skip(4).take(3){

print!("{},", 1);
}

println!(Q)

Back to Closures: Passing as Arguments

« Each closure has a distinct type

— Even if two closures have the same signature, their types are
considered different
» Such types are called generative types

« To specify the type of a closure (for a function parameter,
say), use generics with trait bounds
- Fn ¢t (will describe later)

— FnMut ¢
— FnOnce ¢t

* Functions (defined with £n £...) implement the above trait
bounds too

CMSC 330 - Fall 2021

Using the Fn Trait

Trait boundonTto
3 specify type of £

fn app int<T>(f:

£(x)}
fn main() {

println! (“{}”,app_int((|x| x-1),1));
}

— But cannot write

fn app int(f£:(i32) -> i32,x:i32) -> i32
{ £(x) }

e Can also use function trait bounds in struct,
enum, etc. definitions

CMSC 330 - Fall 2021

Using the Fn Trait Polymorphically

fn app<T,U,W>(£:T,x:U) -> W
where T:Fn(U) -> W

{

£ (x)
}
fn main() {

println! ("{}",app((|x| x-1),1));//i32

let s = String::from("hi ") ;

println! ("{}",app(lx| x+"there",s));//String
}

CMSC 330 - Fall 2021

Capturing Free Variables

fn main() { Closure
let x = 4; nv
let equal to x = |z]| z ==@ captures x
let y = 4;
assert! (equal_ to_x(y))

} // true

— Note: fails if equal to_ x defined as a local function
» Local functions do not have an environment

« Complication: What if x is owned?

— Capturing it could move it or borrow (mut or immut)
— Use various Fn.X traits to specify what to do

CMSC 330 - Fall 2021

Distinguishing Fn Trait Bounds

« FnOnce ¢t (where tis a func type)

— Consumes the variables it captures from its enclosing scope (i.e.,
moves or copies them)

— Thus can only be called once
» The call consumes ownership

 FnMut ¢
— Borrows captured variables mutably
* Fn ¢

— Borrows captured variables immutably, or copies
« equal to x copied x due to its Copy trait

— Try this bound first; follow the compiler’s advice if it doesn’t work

CMSC 330 - Fall 2021

Example use of FnOnce

let x = String::from("hi");

let add x = |z| x+z; //captures x; is FnOnce
println! ("x = {}",x); //fails

let s = add x(" there");//consumes closure
let t = add x(" joe");//fails, add x consumed

CMSC 330 - Fall 2021

