
CMSC 330: Organization of Programming 
Languages

Reference Counting 
and Interior Mutability

CMSC330 Fall 2021 Copyright © 2021 Michael Coblenz and Michael Hicks, the University of 
Maryland. Some material based on https://doc.rust-lang.org/book/second-
edition/index.html 1

https://doc.rust-lang.org/book/second-edition/index.html


Rust Ownership and Mutation

• Recall Rust ownership rules
– Each value in Rust has a variable that’s called its owner; there can be 

only one
– When the owner goes out of scope, the value will be dropped

• Recall Rust mutability rules
– Mutation can occur only through mutable variables (e.g., the owner) or 

references
– Rust permits only one borrowed mutable reference (and no immutable 

ones at the same time)

2



But: Mutation and Sharing is Useful

• Example: a simple spreadsheet
struct CellStyle { fontSize: f64 }
struct Cell { style: CellStyle }
struct Table { cells: [Cell; 128] }

– So: a Table owns its Cells

• But: a format inspector needs to read and write the 
cell data

– Ensuring only one borrowed mutable reference would 
be awkward

– Easier if the inspector has its own reference

3



Another Example

• Suppose you have a multiplayer chess game
– Local data structures record the board state
– Maybe the board is owned by the window that contains it

• What happens when a new move comes in from the network?
– That’s handled by a different software component, not the window

• Simplest design is to have multiple (mutable) references to the board
– But Rust doesn't allow that

4



Relaxing Rust's Restrictions

• Architecturally, designating one owner that all accesses must go 
through can be awkward

– We might end up wanting shared mutable access to the owner!

• Rust provides APIs by which you can get around the compiler-
enforced restrictions against multiple mutable references

– Use reference counting to manage lifetimes safely
– Track borrows at run-time to overcome limited compiler analysis
– Discipline is called interior mutability
– But: extra checks at space and time overhead; some previous compile-

time failures now occur at run-time

5



Multiple Pointers to a Value
• What’s wrong with this code?

– Box::new takes ownership of its argument, so the second 
Box::new(a) call fails since a is no longer the owner

• How to allow something like this code?
– Problem: Managing lifetime

6

fn main() {
let a = Cons(5,

Box::new(Cons(10,
Box::new(Nil))));

let b = Cons(3, Box::new(a));
let c = Cons(4, Box::new(a));//fails

}

enum List {
Nil,
Cons(i32,Box<List>)

}



Managing Lifetimes Dynamically 

• Benefit of ownership: compiler knows when to free memory
{ 

let nil_box = Box::new(List::Nil);
// free memory HERE (nil_box is going out of scope)

}

• Suppose Box didn't own its data:
let nil_box = Box::new(List::Nil);

let one_list = List::Cons(1, nil_box);

{
let two_list = List::Cons(2, nil_box);

// two_list is going out of scope; free nil_box too?
}

• (Box does own its data so the above pattern is not allowed.)

7

enum List {
Nil,
Cons(i32,Box<List>)

}

error[E0382]: use of 
moved value: `nil_box`



Rc<T>: Multiple Owners, Dynamically

• This is a smart pointer that associates a counter with the underlying 
reference

• Calling clone copies the pointer, not the pointed-to data, and bumps 
the counter by one

– By convention, call Rc::clone(&a) rather than a.clone(), as a 
visual marker for future performance debugging

• In general, calls to x.clone() are possible issues

• Calling drop reduces the counter by one
• When the counter hits zero, the data is freed

8



Rc::clone “Shares” Ownership

• Rc associates a refCount with the value

• let x = Rc::new(42);
• let y = Rc::clone(x);
• let z = Rc::clone(x);

9

42
valrefCount

stack (for example) heap
does heap allocation, like Box::new, but uses reference counting

clone() increments reference count

clone() increments reference count

123



Lists with Sharing

10

enum List {
Nil,
Cons(i32,Rc<List>)

}

use List::{Cons, Nil};

fn main() {
let a = Rc::new(Cons(5,

Rc::new(Cons(10,
Rc::new(Nil)))));

let b = Cons(3, Rc::clone(&a));
let c = Cons(4, Rc::clone(&a));//ok

}

Nb. Rc::strong_count returns the current ref count



Reference Counting: Summary

• To create: let r = Rc::new(...);
• To copy a pointer: let s = Rc::clone(&r);

– Increments the reference count
• To move a reference: let t = s;

– Does not increment reference count; s no longer the owner
• To free is automatic: drop is called when variables go out of scope, 

reducing the count; freed when 0

• See docs:
– https://doc.rust-lang.org/book/ch15-04-rc.html
– https://doc.rust-lang.org/std/rc/index.html

11

https://doc.rust-lang.org/book/ch15-04-rc.html
https://doc.rust-lang.org/std/rc/index.html

