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Security breaches
• TJX (2007) - 94 million records*
• Adobe (2013) - 150 million records, 38 million users
• eBay (2014) - 145 million records
• Equifax (2017) – 148 millions consumers
• Yahoo (2013) – 3 billion user accounts
• Twitter (2018) – 330 million users
• First American Financial Corp (2019) – 885 million users 
• Anthem (2014) - Records of 80 million customers
• Target (2013) - 110 million records
• Heartland (2008) - 160 million records

2

https://www.oneid.com/7-biggest-security-breaches-of-the-past-decade-2/

*containing SSNs, credit card nums, other private info

https://www.oneid.com/7-biggest-security-breaches-of-the-past-decade-2/


2017 Equifax Data Breach

• 148 million consumers’ personal information stolen

• They collect every details of your personal life
• Your SSN, Credit Card Numbers, Late Payments…

• You did not sign up for it

• You cannot ask them to stop collecting your data

• You have to pay to credit freeze/unfreeze

3



Vulnerabilities: Security-relevant Defects
• The causes of security breaches are 

varied, but many of them owe to a defect
(or bug) or design flaw in a targeted 
computer system's software.

• Software defect (bug) or design flaw can 
be exploited to affect an undesired 
behavior
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Defects and 
Vulnerabilities

• The use of software is growing
• So: more bugs and flaws

• Software is large (lines of code)
• Boeing 787: 14 million 
• Chevy volt: 10 million
• Google: 2 billion
• Windows: 50 million
• Mac OS: 80 million
• F35 fighter Jet: 24 million
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Quiz 1

Program testing can show that a program has no bugs.

A. True
B. False
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Quiz 1

Program testing can show that a program has no bugs.

A. True
B. False

Program testing can be used to show the presence of bugs, but 
never to show their absence!

--Edsger Dijkstra
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In this Lecture

• The basics of threat modeling.

• Two kinds of exploits: buffer overflows and command 
injection.

• Two kinds of defense: type-safe programming 
languages, and input validation.

You will learn more in CMSC414, CMSC417, CMSC456
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Considering Correctness

• All software is buggy, isn’t it? Haven’t we been 
dealing with this for a long time?

• A normal user never sees most bugs, or figures out 
how to work around them

• Therefore, companies fix the most likely bugs, to 
save money
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Exploit the Bug

• A typical interaction with a bug 
results in a crash

• An attacker is not a normal user!
• The attacker will actively attempt 

to find defects, using unusual 
interactions and features

• An attacker will work to exploit the 
bug to do much worse, to achieve 
his goals
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Exploitable Bugs
• Many kinds of exploits have been developed over 

time, with technical names like

• Buffer overflow
• Use after free
• Command injection
• SQL injection
• Privilege escalation
• Cross-site scripting
• Path traversal
• …
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Buffer Overflow

• A buffer overflow describes a family of 
possible exploits of a vulnerability in which a 
program may incorrectly access a buffer 
outside its allotted bounds. 

• A buffer overwrite occurs when the out-of-
bounds access is a write. 

• A buffer overread occurs when the access is 
a read. 
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Example: Out-of-Bounds Read/write in C 
Output:

The value of z changed 
from 20 to 21. Why?
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Example: Out-of-Bounds Read/write in C 

• array y has length 10
• but the second argument of 

incr_arr is 11, which is one 
more than it should be. 

• As a result, line 5 will be allowed 
to read/write past the end of the 
array. 

Output:

1 1 1 1 1 1 1 1 1 1 20

0 1 2 3 4 5 6 7 8 9 10

buffer
overwrite
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Example: Out-of-Bounds Read/write in OCaml

• OCaml detects the attempt to write one past the end of the array 
and signals by throwing an exception. 

Consider the same program, written in OCaml

Exception: Invalid_argument "index out of 
bounds". 
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Exploiting a Vulnerability 

a.out

a.out 11  

If an attacker can force the argument to be 11 (or 
more), then he can trigger the bug. 
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int y[10]={1,1,1,1,1,1,1,1,1,1};
int z = 20;



Quiz 2

If you declare an array as int a[100]; in C and you try to write 5 to 
a[i], where i happens to be 200, what will happen?

A. Nothing
B. The C compiler will give you an error and won’t compile
C. There will always be a runtime error
D. Whatever is at a[200] will be overwritten
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What Can Exploitation Achieve? 

• Buffer Overread: Heartbleed 
• Heartbleed is a bug in the popular, open-

source OpenSSL codebase, part of the  
HTTPS protocol. 

• The attacker can read the memory beyond 
the buffer, which could contain secret keys 
or passwords, perhaps provided by 
previous clients 
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What Can Exploitation Achieve? 

• Buffer Overwrite: Morris Worm 
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What happened?
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• For C/C++ programs
• A buffer with the password could be a local variable

• Therefore
• The attacker’s input (includes machine instructions) is too long, 

and overruns the buffer

• The overrun rewrites the return address to point into the buffer, 
at the machine instructions

• When the call “returns” it executes the attacker’s code 



Which kinds of operation is most likely to not lead to a 
buffer overflow in C?

A. Floating point addition
B. Indexing of arrays
C. Dereferencing a pointer
D. Pointer arithmetic
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Quiz 3



Which kinds of operation is most likely to not lead to a 
buffer overflow in C?

A. Floating point addition
B. Indexing of arrays
C. Dereferencing a pointer
D. Pointer arithmetic
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Code Injection
• Attacker tricks an application to treat attacker-provided data as 

code

• This feature appears in many other exploits too

• SQL injection treats data as database queries
• Cross-site scripting treats data as Javascript commands
• Command injection treats data as operating system commands
• Use-after-free can cause stale data to be treated as code
• Etc.
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Use After Free (bug, no exploit)
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Trusting the Programmer?

• Buffer overflows rely on the ability to 
read or write outside the bounds of a 
buffer

• Use-after-free relies on the ability to 
keep using freed memory once it’s been 
reallocated

• C and C++ programs expect the 
programmer to ensure this never 
happens
• But humans (regularly) make mistakes!
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Jim Hague’s IOCCC winner program



Defense: Type-safe Languages 

• Type-safe Languages (like Python, OCaml, Java, etc.) ensure buffer 
sizes are respected

• Compiler inserts checks at reads/writes. Such checks can halt 
the program. But will prevent a bug from being exploited

• Garbage collection avoids the use-after-free bugs. No object will 
be freed if it could be used again in the future. 
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Why Is Type Safety Helpful? 

• Type safety ensures two useful properties that preclude buffer overflows and 
other memory corruption-based exploits. 

• Preservation: memory in use by the program at a particular type T always 
has that type T. 

• Progress: values deemed to have type T will be usable by code expecting 
to receive a value of that type 

• To ensure preservation and progress implies that only non-freed buffers can 
only be accessed within their allotted bounds, precluding buffer overflows. 
• Overwrites breaks preservation
• Overreads could break progress
• Uses-after-free could break both
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Quiz 4

Applications developed in the programming languages 
__________ are susceptible to buffer overflows and uses-
after-free.

A. Ruby, Python
B. Ocaml, Haskell
C. C, C++
D. Rust, C#
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• Performance
• Array Bounds Checks and Garbage Collection  add overhead to a program's 

running time. 

• Expressiveness
• C casts between different sorts of objects, e.g., a struct and an array. 

- Need casting in System programming  

• This sort of operation -- cast from integer to pointer -- is not permitted in a type 
safe language. 
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Costs of Ensuring Type Safety



Command Injection

• A type-safe language will rule out the possibility of buffer overflow 
exploits. 

• Unfortunately, type safety will not rule out all forms of attack
• Command Injection: (also known as shell injection) is a security 

vulnerability that allows an attacker to execute arbitrary operating 
system (OS) commands on the server that is running an 
application. 
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What’s wrong with this Ruby code?

if ARGV.length < 1 then
puts "required argument: textfile path"
exit 1

end

# call cat command on given argument
system(“cat ”+ARGV[0]) 

exit 0

catwrapper.rb:
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> ls
catwrapper.rb
hello.txt

> ruby catwrapper.rb hello.txt
Hello world!

> ruby catwrapper.rb catwrapper.rb
if ARGV.length < 1 then

puts "required argument: textfile path”
…

> ruby catwrapper.rb “hello.txt; rm hello.txt”
Hello world!

> ls
catwrapper.rb

Possible Interaction
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What Happened?

if ARGV.length < 1 then
puts "required argument: textfile path"
exit 1

end

# call cat command on given argument
system(“cat ”+ARGV[0])

exit 0

catwrapper.rb:
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system()
interpreted the 
string as having 
two commands, 
and executed 
them both
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When could this be bad?



• If catwrapper.rb is part of a web service
• Input is untrusted — could be anything
• But we only want requestors to read (see) the contents of the files, not to 

do anything else
• Current code is too powerful: vulnerable to

command injection
• How to fix it?

Need to validate inputs

https://www.owasp.org/index.php/Command_Injection
37

Consequences



Defense: Input Validation 
• Inputs that could cause our program to do 

something illegal
• Such atypical inputs are more likely when 

an untrusted adversary is providing them 

We must validate the client inputs 
before we trust it
• Making input trustworthy
• Sanitize it by modifying it or using it it in such a 

way that the result is correctly formed by 
construction

• Check it has the expected form, and reject it if 
not
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system("cat "+ARGV[0])

• Reject strings with possibly bad chars: ’ ; --

> ruby catwrapper.rb “hello.txt; rm hello.txt”
illegal argument

reject 
inputs that 
have ; in them

if ARGV[0] =~ /;/ then
puts "illegal argument"
exit 1

else
system("cat "+ARGV[0])

end
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Checking: Blacklisting



• Delete the characters you don’t want: ’ ; --

> ruby catwrapper.rb “hello.txt; rm hello.txt”
Hello world!
cat: rm: No such file or directory
Hello world!
> ls hello.txt
hello.txt

delete occurrences
of ; from input string

system(“cat ”+ARGV[0].tr(“;”,“”)) 
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Sanitization: Blacklisting



• Replace problematic characters with safe ones
• change ’ to \’
• change ; to \;
• change - to \-
• change \ to \\

• Which characters are problematic depends on the interpreter the 
string will be handed to
• Web browser/server for URIs
- URI::escape(str,unsafe_chars)

• Program delegated to by web server
- CGI::escape(str)
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Sanitization: Escaping



> ruby catwrapper.rb “hello.txt; rm hello.txt”
cat: hello.txt; rm hello.txt: No such file or directory
> ls hello.txt
hello.txt

escape 
occurrences
of ‘, “”, ; etc. in 
input string

def escape_chars(string)
pat = /(\'|\"|\.|\*|\/|\-|\\|;|\||\s)/
string.gsub(pat){|match|"\\" + match} 

end

system(“cat ”+escape_chars(ARGV[0])) 
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Sanitization: Escaping



Checking: Whitelisting

• Check that the user input is known to be safe
• E.g., only those files that exactly match a filename in the current 

directory

• Rationale: Given an invalid input, safer to reject than to fix
• “Fixes” may result in wrong output, or vulnerabilities
• Principle of fail-safe defaults
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system("cat "+ARGV[0])

> ruby catwrapper.rb “hello.txt; rm hello.txt”
illegal argument

files = Dir.entries(".").reject{|f| File.directory?(f)}

if not (files.member? ARGV[0]) then
puts "illegal argument"
exit 1

else
system("cat "+ARGV[0])

end

reject inputs that 
do not mention a 
legal file name
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Checking: Whitelisting



• Cannot always delete or sanitize problematic characters
• You may want dangerous chars, e.g., “Peter O’Connor”
• How do you know if/when the characters are bad?
• Hard to think of all of the possible characters to eliminate

• Cannot always identify whitelist cheaply or completely
• May be expensive to compute at runtime
• May be hard to describe (e.g., “all possible proper names”)
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Validation Challenges



WWW Security
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• Security for the World-Wide Web (WWW) presents new
vulnerabilities to consider:
• SQL injection
• Cross-site Scripting (XSS)
•

• These share some common causes with memory safety 
vulnerabilities; like confusion of code and data
• Defense also similar: validate untrusted input

• New wrinkle: Web 2.0’s use of mobile code
- How to protect your applications and other web resources?



The Basic Structure of Web Traffic
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Interacting with web servers

http://www.cs.umd.edu/~mwh/index.html

Resources which are identified by a URL
(Universal Resource Locator)

Protocol

ftp
https
tor

Hostname/server
Translated to an IP 
address by DNS
(e.g., 128.8.127.3)

Path to a resource

http://facebook.com/delete.php
Path to a resource

Here, the file delete.php is dynamic content. i.e., the server 
generates the content on the fly

?f=joe123&w=16
Arguments

index.html is static content i.e.,  a 
fixed file returned by the server
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http://www.cs.umd.edu/~mwh/index.html


Browser Web server

Client Server

HTTP Request

User clicks

• Requests contain:
• The URL of the resource the client wishes to obtain
• Headers describing what the browser can do

• Request types can be GET or POST
• GET: all data is in the URL itself (no server side effects)
• POST: includes the data as separate fields (can have side effects)

HyperText Transfer Protocol (HTTP) 
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HTTP GET Requests
http://www.reddit.com/r/security

User-Agent is typically a browser, but it can be wget, JDK, etc.
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http://www.reddit.com/r/security


Referrer URL: the site from which
this request was issued.

Referrer
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HTTP POST Requests
Posting on Piazza

Explicitly includes data as a part of the request’s content

Implicitly includes data
as a part of the URL

52



• Responses contain:
• Status code
• Headers describing what the server provides
• Data
• Cookies (much more on these later)

• Represent state the server would like the browser to store on its behalf

HyperText Transfer Protocol (HTTP) 

Browser Web server

Client Server
HTTP Request

User clicks

HTTP Response
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<html> …… </html>

He
ad

er
s

Da
ta

HTTP
version

Status
code

Reason
phrase

HTTP Responses

54



SQL Injection

• SQL injection is a code injection attack that aims to steal or 
corrupt information kept in a server-side database. 
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Web 

Server
Database 

Server
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Relational Databases and SQL Queries 

Browser Web server

Database

Client Server

(Private)
Data

Need to protect this state
from illicit access and 
tampering
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Relational Data as Tables
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Users
Name Gender Age Email Password

Dee F 28 dee@pp.com j3i8g8ha

Mac M 7 bouncer@pp.com a0u23bt

Charlie M 32 aneifjask@pp.com 0aergja

Dennis M 28 imagod@pp.com 1bjb9a93

Frank M 57 armed@pp.com ziog9gga

Row (Record)

Column
Table Name

• A relational database organizes information as tables of records. 

mailto:dee@pp.com
mailto:bouncer@pp.com
mailto:aneifjask@pp.com
mailto:imagod@pp.com
mailto:armed@pp.com


SQL (Standard Query Language)
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SELECT Age FROM Users WHERE Name=‘Dee’; 28

UPDATE Users SET email=‘readgood@pp.com’
WHERE Age=32; -- this is a comment

INSERT INTO Users Values(‘Frank’, ‘M’, 57, ...);

DROP TABLE Users;

mailto:readgood@pp.com


Server-side data
• Typically want ACID transactions

• Atomicity
- Transactions complete entirely or not at all

• Consistency
- The database is always in a valid state

• Isolation
- Results from a transaction aren’t visible until it is complete

• Durability
- Once a transaction is committed, its effects persist despite, e.g., 

power failures

• Database Management Systems (DBMSes) 
provide these properties (and then some)
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