
Software Security
Building Security in

CMSC330 Fall 2021

1

Security breaches
• TJX (2007) - 94 million records*
• Adobe (2013) - 150 million records, 38 million users
• eBay (2014) - 145 million records
• Equifax (2017) – 148 millions consumers
• Yahoo (2013) – 3 billion user accounts
• Twitter (2018) – 330 million users
• First American Financial Corp (2019) – 885 million users
• Anthem (2014) - Records of 80 million customers
• Target (2013) - 110 million records
• Heartland (2008) - 160 million records

2

https://www.oneid.com/7-biggest-security-breaches-of-the-past-decade-2/

*containing SSNs, credit card nums, other private info

https://www.oneid.com/7-biggest-security-breaches-of-the-past-decade-2/

2017 Equifax Data Breach

• 148 million consumers’ personal information stolen

• They collect every details of your personal life
• Your SSN, Credit Card Numbers, Late Payments…

• You did not sign up for it

• You cannot ask them to stop collecting your data

• You have to pay to credit freeze/unfreeze

3

Vulnerabilities: Security-relevant Defects
• The causes of security breaches are

varied, but many of them owe to a defect
(or bug) or design flaw in a targeted
computer system's software.

• Software defect (bug) or design flaw can
be exploited to affect an undesired
behavior

4

Defects and
Vulnerabilities

• The use of software is growing
• So: more bugs and flaws

• Software is large (lines of code)
• Boeing 787: 14 million
• Chevy volt: 10 million
• Google: 2 billion
• Windows: 50 million
• Mac OS: 80 million
• F35 fighter Jet: 24 million

5

Quiz 1

Program testing can show that a program has no bugs.

A. True
B. False

6

Quiz 1

Program testing can show that a program has no bugs.

A. True
B. False

Program testing can be used to show the presence of bugs, but
never to show their absence!

--Edsger Dijkstra

7

In this Lecture

• The basics of threat modeling.

• Two kinds of exploits: buffer overflows and command
injection.

• Two kinds of defense: type-safe programming
languages, and input validation.

You will learn more in CMSC414, CMSC417, CMSC456

8

Considering Correctness

• All software is buggy, isn’t it? Haven’t we been
dealing with this for a long time?

• A normal user never sees most bugs, or figures out
how to work around them

• Therefore, companies fix the most likely bugs, to
save money

9

Exploit the Bug

• A typical interaction with a bug
results in a crash

• An attacker is not a normal user!
• The attacker will actively attempt

to find defects, using unusual
interactions and features

• An attacker will work to exploit the
bug to do much worse, to achieve
his goals

10

Exploitable Bugs
• Many kinds of exploits have been developed over

time, with technical names like

• Buffer overflow
• Use after free
• Command injection
• SQL injection
• Privilege escalation
• Cross-site scripting
• Path traversal
• …

11

Buffer Overflow

• A buffer overflow describes a family of
possible exploits of a vulnerability in which a
program may incorrectly access a buffer
outside its allotted bounds.

• A buffer overwrite occurs when the out-of-
bounds access is a write.

• A buffer overread occurs when the access is
a read.

12

Example: Out-of-Bounds Read/write in C
Output:

The value of z changed
from 20 to 21. Why?

13

Example: Out-of-Bounds Read/write in C

• array y has length 10
• but the second argument of

incr_arr is 11, which is one
more than it should be.

• As a result, line 5 will be allowed
to read/write past the end of the
array.

Output:

1 1 1 1 1 1 1 1 1 1 20

0 1 2 3 4 5 6 7 8 9 10

buffer
overwrite

14

Example: Out-of-Bounds Read/write in OCaml

• OCaml detects the attempt to write one past the end of the array
and signals by throwing an exception.

Consider the same program, written in OCaml

Exception: Invalid_argument "index out of
bounds".

15

Exploiting a Vulnerability

a.out

a.out 11

If an attacker can force the argument to be 11 (or
more), then he can trigger the bug.

16

int y[10]={1,1,1,1,1,1,1,1,1,1};
int z = 20;

Quiz 2

If you declare an array as int a[100]; in C and you try to write 5 to
a[i], where i happens to be 200, what will happen?

A. Nothing
B. The C compiler will give you an error and won’t compile
C. There will always be a runtime error
D. Whatever is at a[200] will be overwritten

17

Quiz 2

If you declare an array as int a[100]; in C and you try to write 5 to
a[i], where i happens to be 200, what will happen?

A. Nothing
B. The C compiler will give you an error and won’t compile
C. There will always be a runtime error
D. Whatever is at a[200] will be overwritten

18

What Can Exploitation Achieve?

• Buffer Overread: Heartbleed
• Heartbleed is a bug in the popular, open-

source OpenSSL codebase, part of the
HTTPS protocol.

• The attacker can read the memory beyond
the buffer, which could contain secret keys
or passwords, perhaps provided by
previous clients

19

What Can Exploitation Achieve?

• Buffer Overwrite: Morris Worm

20

What happened?

21

• For C/C++ programs
• A buffer with the password could be a local variable

• Therefore
• The attacker’s input (includes machine instructions) is too long,

and overruns the buffer

• The overrun rewrites the return address to point into the buffer,
at the machine instructions

• When the call “returns” it executes the attacker’s code

Which kinds of operation is most likely to not lead to a
buffer overflow in C?

A. Floating point addition
B. Indexing of arrays
C. Dereferencing a pointer
D. Pointer arithmetic

22

Quiz 3

Which kinds of operation is most likely to not lead to a
buffer overflow in C?

A. Floating point addition
B. Indexing of arrays
C. Dereferencing a pointer
D. Pointer arithmetic

23

Quiz 3

Code Injection
• Attacker tricks an application to treat attacker-provided data as

code

• This feature appears in many other exploits too

• SQL injection treats data as database queries
• Cross-site scripting treats data as Javascript commands
• Command injection treats data as operating system commands
• Use-after-free can cause stale data to be treated as code
• Etc.

24

Use After Free (bug, no exploit)

25

Trusting the Programmer?

• Buffer overflows rely on the ability to
read or write outside the bounds of a
buffer

• Use-after-free relies on the ability to
keep using freed memory once it’s been
reallocated

• C and C++ programs expect the
programmer to ensure this never
happens
• But humans (regularly) make mistakes!

26

Jim Hague’s IOCCC winner program

Defense: Type-safe Languages

• Type-safe Languages (like Python, OCaml, Java, etc.) ensure buffer
sizes are respected

• Compiler inserts checks at reads/writes. Such checks can halt
the program. But will prevent a bug from being exploited

• Garbage collection avoids the use-after-free bugs. No object will
be freed if it could be used again in the future.

27

Why Is Type Safety Helpful?

• Type safety ensures two useful properties that preclude buffer overflows and
other memory corruption-based exploits.

• Preservation: memory in use by the program at a particular type T always
has that type T.

• Progress: values deemed to have type T will be usable by code expecting
to receive a value of that type

• To ensure preservation and progress implies that only non-freed buffers can
only be accessed within their allotted bounds, precluding buffer overflows.
• Overwrites breaks preservation
• Overreads could break progress
• Uses-after-free could break both

28

Quiz 4

Applications developed in the programming languages
__________ are susceptible to buffer overflows and uses-
after-free.

A. Ruby, Python
B. Ocaml, Haskell
C. C, C++
D. Rust, C#

29

Quiz 4

Applications developed in the programming languages
__________ are susceptible to buffer overflows and uses-
after-free.

A. Ruby, Python
B. Ocaml, Haskell
C. C, C++
D. Rust, C#

30

• Performance
• Array Bounds Checks and Garbage Collection add overhead to a program's

running time.

• Expressiveness
• C casts between different sorts of objects, e.g., a struct and an array.

- Need casting in System programming

• This sort of operation -- cast from integer to pointer -- is not permitted in a type
safe language.

31

Costs of Ensuring Type Safety

Command Injection

• A type-safe language will rule out the possibility of buffer overflow
exploits.

• Unfortunately, type safety will not rule out all forms of attack
• Command Injection: (also known as shell injection) is a security

vulnerability that allows an attacker to execute arbitrary operating
system (OS) commands on the server that is running an
application.

32

What’s wrong with this Ruby code?

if ARGV.length < 1 then
puts "required argument: textfile path"
exit 1

end

call cat command on given argument
system(“cat ”+ARGV[0])

exit 0

catwrapper.rb:

33

> ls
catwrapper.rb
hello.txt

> ruby catwrapper.rb hello.txt
Hello world!

> ruby catwrapper.rb catwrapper.rb
if ARGV.length < 1 then

puts "required argument: textfile path”
…

> ruby catwrapper.rb “hello.txt; rm hello.txt”
Hello world!

> ls
catwrapper.rb

Possible Interaction

34

What Happened?

if ARGV.length < 1 then
puts "required argument: textfile path"
exit 1

end

call cat command on given argument
system(“cat ”+ARGV[0])

exit 0

catwrapper.rb:

35

system()
interpreted the
string as having
two commands,
and executed
them both

36

When could this be bad?

• If catwrapper.rb is part of a web service
• Input is untrusted — could be anything
• But we only want requestors to read (see) the contents of the files, not to

do anything else
• Current code is too powerful: vulnerable to

command injection
• How to fix it?

Need to validate inputs

https://www.owasp.org/index.php/Command_Injection
37

Consequences

Defense: Input Validation
• Inputs that could cause our program to do

something illegal
• Such atypical inputs are more likely when

an untrusted adversary is providing them

We must validate the client inputs
before we trust it
• Making input trustworthy
• Sanitize it by modifying it or using it it in such a

way that the result is correctly formed by
construction

• Check it has the expected form, and reject it if
not

38

system("cat "+ARGV[0])

• Reject strings with possibly bad chars: ’ ; --

> ruby catwrapper.rb “hello.txt; rm hello.txt”
illegal argument

reject
inputs that
have ; in them

if ARGV[0] =~ /;/ then
puts "illegal argument"
exit 1

else
system("cat "+ARGV[0])

end

39

Checking: Blacklisting

• Delete the characters you don’t want: ’ ; --

> ruby catwrapper.rb “hello.txt; rm hello.txt”
Hello world!
cat: rm: No such file or directory
Hello world!
> ls hello.txt
hello.txt

delete occurrences
of ; from input string

system(“cat ”+ARGV[0].tr(“;”,“”))

40

Sanitization: Blacklisting

• Replace problematic characters with safe ones
• change ’ to \’
• change ; to \;
• change - to \-
• change \ to \\

• Which characters are problematic depends on the interpreter the
string will be handed to
• Web browser/server for URIs
- URI::escape(str,unsafe_chars)

• Program delegated to by web server
- CGI::escape(str)

41

Sanitization: Escaping

> ruby catwrapper.rb “hello.txt; rm hello.txt”
cat: hello.txt; rm hello.txt: No such file or directory
> ls hello.txt
hello.txt

escape
occurrences
of ‘, “”, ; etc. in
input string

def escape_chars(string)
pat = /(\'|\"|\.|*|\/|\-|\\|;|\||\s)/
string.gsub(pat){|match|"\\" + match}

end

system(“cat ”+escape_chars(ARGV[0]))

42

Sanitization: Escaping

Checking: Whitelisting

• Check that the user input is known to be safe
• E.g., only those files that exactly match a filename in the current

directory

• Rationale: Given an invalid input, safer to reject than to fix
• “Fixes” may result in wrong output, or vulnerabilities
• Principle of fail-safe defaults

43

system("cat "+ARGV[0])

> ruby catwrapper.rb “hello.txt; rm hello.txt”
illegal argument

files = Dir.entries(".").reject{|f| File.directory?(f)}

if not (files.member? ARGV[0]) then
puts "illegal argument"
exit 1

else
system("cat "+ARGV[0])

end

reject inputs that
do not mention a
legal file name

44

Checking: Whitelisting

• Cannot always delete or sanitize problematic characters
• You may want dangerous chars, e.g., “Peter O’Connor”
• How do you know if/when the characters are bad?
• Hard to think of all of the possible characters to eliminate

• Cannot always identify whitelist cheaply or completely
• May be expensive to compute at runtime
• May be hard to describe (e.g., “all possible proper names”)

45

Validation Challenges

WWW Security

46

• Security for the World-Wide Web (WWW) presents new
vulnerabilities to consider:
• SQL injection
• Cross-site Scripting (XSS)
•

• These share some common causes with memory safety
vulnerabilities; like confusion of code and data
• Defense also similar: validate untrusted input

• New wrinkle: Web 2.0’s use of mobile code
- How to protect your applications and other web resources?

The Basic Structure of Web Traffic

47

Interacting with web servers

http://www.cs.umd.edu/~mwh/index.html

Resources which are identified by a URL
(Universal Resource Locator)

Protocol

ftp
https
tor

Hostname/server
Translated to an IP
address by DNS
(e.g., 128.8.127.3)

Path to a resource

http://facebook.com/delete.php
Path to a resource

Here, the file delete.php is dynamic content. i.e., the server
generates the content on the fly

?f=joe123&w=16
Arguments

index.html is static content i.e., a
fixed file returned by the server

48

http://www.cs.umd.edu/~mwh/index.html

Browser Web server

Client Server

HTTP Request

User clicks

• Requests contain:
• The URL of the resource the client wishes to obtain
• Headers describing what the browser can do

• Request types can be GET or POST
• GET: all data is in the URL itself (no server side effects)
• POST: includes the data as separate fields (can have side effects)

HyperText Transfer Protocol (HTTP)

49

HTTP GET Requests
http://www.reddit.com/r/security

User-Agent is typically a browser, but it can be wget, JDK, etc.

50

http://www.reddit.com/r/security

Referrer URL: the site from which
this request was issued.

Referrer

51

HTTP POST Requests
Posting on Piazza

Explicitly includes data as a part of the request’s content

Implicitly includes data
as a part of the URL

52

• Responses contain:
• Status code
• Headers describing what the server provides
• Data
• Cookies (much more on these later)

• Represent state the server would like the browser to store on its behalf

HyperText Transfer Protocol (HTTP)

Browser Web server

Client Server
HTTP Request

User clicks

HTTP Response

53

<html> …… </html>

He
ad

er
s

Da
ta

HTTP
version

Status
code

Reason
phrase

HTTP Responses

54

SQL Injection

• SQL injection is a code injection attack that aims to steal or
corrupt information kept in a server-side database.

55

Client
Web

Server
Database

Server

Request SQL Request

DataData

Relational Databases and SQL Queries

Browser Web server

Database

Client Server

(Private)
Data

Need to protect this state
from illicit access and
tampering

56

Relational Data as Tables

57

Users
Name Gender Age Email Password

Dee F 28 dee@pp.com j3i8g8ha

Mac M 7 bouncer@pp.com a0u23bt

Charlie M 32 aneifjask@pp.com 0aergja

Dennis M 28 imagod@pp.com 1bjb9a93

Frank M 57 armed@pp.com ziog9gga

Row (Record)

Column
Table Name

• A relational database organizes information as tables of records.

mailto:dee@pp.com
mailto:bouncer@pp.com
mailto:aneifjask@pp.com
mailto:imagod@pp.com
mailto:armed@pp.com

SQL (Standard Query Language)

58

SELECT Age FROM Users WHERE Name=‘Dee’; 28

UPDATE Users SET email=‘readgood@pp.com’
WHERE Age=32; -- this is a comment

INSERT INTO Users Values(‘Frank’, ‘M’, 57, ...);

DROP TABLE Users;

mailto:readgood@pp.com

Server-side data
• Typically want ACID transactions

• Atomicity
- Transactions complete entirely or not at all

• Consistency
- The database is always in a valid state

• Isolation
- Results from a transaction aren’t visible until it is complete

• Durability
- Once a transaction is committed, its effects persist despite, e.g.,

power failures

• Database Management Systems (DBMSes)
provide these properties (and then some)

59

