Software Security
Building Security in

& ol T‘B
¢
@

@
s _ 0 \\\

/N » " |
\ CMSC330 Fall 2021

Security breaches TIX

TJX (2007) - 94 million records”®

Adobe (2013) - 150 million records, 38 million users
eBay (2014) - 145 million records

Equifax (2017) — 148 millions consumers

Yahoo (2013) — 3 billion user accounts

™ b

Twitter (2018) — 330 million users _ Anthem.gig
First American Financial Corp (2019) — 885 million users
Anthem (2014) - Records of 80 million customers @

Target (2013) - 110 million records
Heartland (2008) - 160 million records

TARGET.

Heartland

https://www.oneid.com/7-biggest-security-breaches-of-the-past-decade-2/

*containing SSNs, credit card nums, other private info

https://www.oneid.com/7-biggest-security-breaches-of-the-past-decade-2/

2017 Equifax Data Breach

* 148 million consumers’ personal information stolen

» They collect every details of your personal life
. Your SSN, Credit Card Numbers, Late Payments...

* You did not sign up for it
* You cannot ask them to stop collecting your data

* You have to pay to credit freeze/unfreeze

Vulnerabilities: Security-relevant Defects

« The causes of security breaches are
varied, but many of them owe to a defect
(or bug) or design flaw in a targeted
computer system's software.

« Software defect (bug) or design flaw can
be exploited to affect an undesired RISK
behavior

Defects and
Vulnerabilities

* The use of software is growing
. So: more bugs and flaws

« Software is large (lines of code)
. Boeing 787: 14 million
- Chevy volt: 10 million
. Google: 2 billion
. Windows: 50 million
. Mac OS: 80 million
- F35 fighter Jet: 24 million

Quiz 1

Program testing can show that a program has no bugs.

A. True
B. False

Quiz 1

Program testing can show that a program has no bugs.

A. True
B. False

Program testing can be used to show the presence of bugs, but
never to show their absence!
--Edsger Dijkstra

In this Lecture

* The basics of threat modeling.

« Two kinds of exploits: buffer overflows and command
injection.

* Two kinds of defense: type-safe programming
languages, and input validation.

You will learn more in CMSC414, CMSC417, CMSC456

Considering Correctness

« All software is buggy, isn't it? Haven't we been
dealing with this for a long time?

A normal user never sees most bugs, or figures out
how to work around them

* Therefore, companies fix the most likely bugs, to
save money

Exploit the Bug

» Atypical interaction with a bug
results in a crash

* An attacker is not a normal user!
The attacker will actively attempt
to find defects, using unusual
interactions and features

« An attacker will work to exploit the
bug to do much worse, to achieve

his goals

yevich Andrienko Sergey Vladimirovich Detistov Pavel Valer

Ommit Computer Fraud cessing ut Authorizatior
:reial Advantage and| Private Findncial Gain; Damaging Computers| Through th
namands; Aggravated Identity Theft; Economic Espionage; Theft of Trade S ts

v D 3
; DONG SUN KAILIANG WEN XINYU
». "UglyGorilla" Aliases: Sun Kai Liang, Jack Sun Aliases: Wen Xin Yu, “WinXY!
“Win_XY”, Lao Wen

10

Exploitable Bugs

« Many kinds of exploits have been developed over
time, with technical names like

. Buffer overflow

. Use after free

. Command injection
. SQL injection

. Privilege escalation
. Cross-site scripting
. Path traversal

Buffer Overflow

A buffer overflow describes a family of
possible exploits of a vulnerability in which a
program may incorrectly access a buffer
outside its allotted bounds.

. A buffer overwrite occurs when the out-of-
bounds access is a write.

. A buffer overread occurs when the access is
a read.

12

Example: Out-of-Bounds Read/write in C
Output:

#include

void 1incr_arr(int *x, int len, int i) {
if (4 i len) {

C[4] = x[4] + 1; The value of z changed
incr_arr (x,len, 1+1); from 20 to 21. Why?

}
}

int y[10] = {1,1,1,1,1,1,1,1,1, }s

int z

int main(int argc, char *xargv) {
incr_arr(y,11,0);
printf(~ AR
return 0;

}

13

Example: Out-of-Bounds Read/write in C

#1include

void incr_arr(int

}

if (i
x[1]

.i

x[i]

x, int len, 1int 1) {

.
)

incr_arr(x,len,1i

}

int y[10]
int z

B
)

{’)’,’)”,};

len) {

)

int main(int argc, char
incr_arr(y,11,0);
printf(
return

}

-
)

yZ)

argv) {

Output:

« array y has length 10

* but the second argument of
incr_arr is 11, which is one
more than it should be.

* As a result, line 5 will be allowed
to read/write past the end of the
array.

buffer » overwrite

0 1 2 3 4 5 6 7 8 9 10

14

Example: Out-of-Bounds Read/write in OCaml

Consider the same program, written in OCaml

let rec incr_arr x i len =

if 1 >= 0 && i < len then
(x. (1) <= x.(1) + 1;
incr_arr x (i+1l) len)

oo
)

let y = Array.make 10 1;;
incr_arr y 0 (1 + Array.length y);;

Exception: Invalid_argument "index out of
bounds".

« OCaml detects the attempt to write one past the end of the array
and signals by throwing an exception.

15

Exploiting a Vulnerability

int y[10]={1,1,1,1,1,1,1,1,1,1};
int z = 20;

#include <stdlib.h>
int main(int argc, char xxargv) {
int len = 10;
if (argc == 2) len = atoi(argv[1]);

incr_arr(y,len,0);
printf("%d =? 20\n",z);
return 0;

}

If an attacker can force the argument to be 11 (or
more), then he can trigger the bug.

16

Quiz 2

If you declare an array as int a[100]; in C and you try to write 5 to
ali], where i happens to be 200, what will happen?

Nothing

The C compiler will give you an error and won’t compile
There will always be a runtime error

Whatever is at a[200] will be overwritten

oo w>

Quiz 2

If you declare an array as int a[100]; in C and you try to write 5 to
ali], where i happens to be 200, what will happen?

Nothing

The C compiler will give you an error and won’t compile
There will always be a runtime error

Whatever is at a[200] will be overwritten

oo w >

18

What Can Exploitation Achieve?

« Buffer Overread: Heartbleed
. Heartbleed is a bug in the popular, open-

source OpenSSL codebase, part of the
HTTPS protocol.

. The attacker can read the memory beyond
the buffer, which could contain secret keys
or passwords, perhaps provided by
previous clients

19

What Can Exploitation Achieve?

o Buffer Overwrite: Morris Worm

Stack Higher Addresses
Code Return address 0 A
10: 1 Saved Frame Pointer fi
o Local variables f0 Stackframe fO
call f1
Arguments f1 v
»| Return address f1 A
L__| Saved Frame Pointer f1
Pointer to data
Data
- . Local Stackframe f1
> Injected Code
Valuel J | Variables
Buffer | .
Value2 fl
\

Lower addresses

20

What happened?

« For C/C++ programs
. A buffer with the password could be a local variable

* Therefore

. The attacker’s input (includes machine instructions) is too long,
and overruns the buffer

. The overrun rewrites the return address to point into the buffer,
at the machine instructions

. When the call “returns” it executes the attacker’s code

Quiz 3

Which kinds of operation is most likely to not lead to a
buffer overflow in C?

Floating point addition
Indexing of arrays
Dereferencing a pointer

00>

Pointer arithmetic

Quiz 3

Which kinds of operation is most likely to not lead to a
buffer overflow in C?

Floating point addition
Indexing of arrays
Dereferencing a pointer

o0 >

Pointer arithmetic

Code Injection

 Attacker tricks an application to treat attacker-provided data as
code

 This feature appears in many other exploits too

. SQL injection treats data as database queries
. Cross-site scripting treats data as Javascript commands
. Command injection treats data as operating system commands

. Use-after-free can cause stale data to be treated as code
. Etc.

24

Use After Free (bug, no exploit)

#include <stdlib.h>
struct list {
int v;
struct list *next;
35
int main() {
struct list *p = malloc(sizeof(struct list));
p->v = 0;
p->next = 0;

free(p); // deallocates p

int *x = malloc(sizeof(int)*2); // reuses p's old memory
x[0] = 5; // overwrites p->v

x[1] = 5; // overwrites p->next

p = p—>next; // p is now bogus

p->v = 23 // CRASH!

return 0;

25

Trusting the Programmer?

 Buffer overflows rely on the ability to
read or write outside the bounds of a
buffer

« Use-after-free relies on the ability to
keep using freed memory once it's been
reallocated

« C and C++ programs expect the

programmer to ensure this never Jim Hague’s IOCCC winner program
happens

But humans (regularly) make mistakes!

26

Defense: Type-safe Languages

« Type-safe Languages (like Python, OCaml, Java, etc.) ensure buffer
sizes are respected

. Compiler inserts checks at reads/writes. Such checks can halt
the program. But will prevent a bug from being exploited

. Garbage collection avoids the use-after-free bugs. No object will
be freed if it could be used again in the future.

27

Why Is Type Safety Helpful?

« Type safety ensures two useful properties that preclude buffer overflows and
other memory corruption-based exploits.

Preservation: memory in use by the program at a particular type T always
has that type T.

Progress: values deemed to have type T will be usable by code expecting
to receive a value of that type

« To ensure preservation and progress implies that only non-freed buffers can
only be accessed within their allotted bounds, precluding buffer overflows.

Overwrites breaks preservation
Overreads could break progress
Uses-after-free could break both

28

Quiz 4

Applications developed in the programming languages
are susceptible to buffer overflows and uses-

after-free.

A. Ruby, Python
B. Ocaml, Haskell
C. C,C++

D. Rust, C#

Quiz 4

Applications developed in the programming languages
are susceptible to buffer overflows and uses-

after-free.

A. Ruby, Python
B. Ocaml, Haskell
C. C,C++

D. Rust, C#

Costs of Ensuring Type Safety

 Performance

. Array Bounds Checks and Garbage Collection add overhead to a program's
running time.

* Expressiveness

C casts between different sorts of objects, e.g., a struct and an array.
- Need casting in System programming

This sort of operation -- cast from integer to pointer -- is not permitted in a type
safe language.

31

Command Injection

» Atype-safe language will rule out the possibility of buffer overflow
exploits.

« Unfortunately, type safety will not rule out all forms of attack
. Command Injection: (also known as shell injection) is a security
vulnerability that allows an attacker to execute arbitrary operating
system (OS) commands on the server that is running an
application.

What's wrong with this Ruby code?

if ARGV.length < 1 then
puts
exit 1

end

call cat command on given argument
system (+ARGV[0])

exit O

33

Possible Interaction

> 1s

catwrapper.rb
hello.txt

> ruby catwrapper.rb hello. txt
Hello world!

> ruby catwrapper.rb catwrapper.rb

if ARGV.length < 1 then
puts "required argument: textfile path”

> ruby catwrapper.rb “hello.txt; rm hello.txt”
Hello world!

> 1ls
catwrapper.rb

34

What Happened?

catwrapper.rb:

if ARGV.length < 1 then
puts
exit 1

end

call cat command on given argument

system (+ARGV[0]) -«

exit O

system()
interpreted the
string as having
two commands,
and executed
them both

35

Client
4 N\
.
I\ /

GET foo.txt

<output>

When could this be bad?

Server

4)
"

!

{catwrapper.rb}

. J

catwrapper.rb as a web service

36

Consequences

 If catwrapper.rb is part of a web service

. Input is untrusted — could be anything
. But we only want requestors to read (see) the contents of the files, not to

do anything else
. Current code is too powerful: vulnerable to

command injection

 How to fix it?

Need to validate inputs

https://www.owasp.org/index.php/Command Injection

37

Defense: Input Validation

"Press any key to continue”

* |Inputs that could cause our program to do
something illegal

« Such atypical inputs are more likely when
an untrusted adversary is providing them

We must validate the client inputs
before we trust it

* Making input trustworthy
. Sanitize it by modifying it or using it it in such a
way that the result is correctly formed by
construction
Chteck ithas the expected form, and reject it if
no

38

Checking: Blacklisting

* Reject strings with possibly bad chars: ' ; --

if ARGV[0] =~ /;/ then

puts "illegal argument" reject
exit 1 inputs that
else have ; in them
system("cat "+ARGV[0])
end

> ruby catwrapper.rb “hello.txt; rm hello.txt”
illegal argument

39

Sanitization: Blacklisting

* Delete the characters you don’twant: © ; -

+ARGV[O0] .tx (“;”, ")) delete occurrences

system (
of ; from input string

> ruby catwrapper.rb “hello.txt; rm hello.txt”
Hello world!

cat: rm: No such file or directory

Hello world!

> l1ls hello. txt

hello.txt

40

Sanitization: Escaping

- Replace problematic characters with safe ones
. change ’ to \’
. change ; to \ ;
. change - to \ -
. change \to \\

* Which characters are problematic depends on the interpreter the
string will be handed to

. Web browser/server for URIs

- URI::escape(str,unsafe chars)
. Program delegated to by web server

- CGI::escape(str)

41

Sanitization: Escaping

def escape chars(string)

pat = /(\INTINCINFIN/IN=INNT S IN T T \s) /
string.gsub (pat) { |match|"\\" + match}

end

system (+escape chars (ARGV[0]))

> ruby catwrapper.rb “hello.txt; rm hello.txt”
cat: hello.txt; rm hello.txt: No such file or directory

> 1s hello. txt

hello.txt

42

Checking: Whitelisting

* Check that the user input is known to be safe

. E.g., only those files that exactly match a filename in the current
directory

« Rationale: Given an invalid input, safer to reject than to fix
. “Fixes” may result in wrong output, or vulnerabilities
. Principle of fail-safe defaults

Checking: Whitelisting

files = Dir.entries(".") .reject{|£f| File.directory? (£f)}

if not (files.member? ARGV[0]) then

puts "illegal argument" reject inputs that
exit 1 do not mention a
else legal file name
system("cat "+ARGV[O0]) J
end

> ruby catwrapper.rb “hello.txt; rm hello.txt”
illegal argument

44

Validation Challenges

« Cannot always delete or sanitize problematic characters
- You may want dangerous chars, e.g., “Peter O’Connor”
- How do you know if/when the characters are bad?
- Hard to think of all of the possible characters to eliminate

« Cannot always identify whitelist cheaply or completely

- May be expensive to compute at runtime
- May be hard to describe (e.g., “all possible proper names”)

WWW Security

« Security for the World-Wide Web (WWW) presents new
vulnerabilities to consider:
. SQL injection
. Cross-site Scripting (XSS)

« These share some common causes with memory safety
vulnerabilities; like confusion of code and data

. Defense also similar: validate untrusted input

* New wrinkle: Web 2.0’s use of mobile code
- How to protect your applications and other web resources?

46

The Basic Structure of Web Traffic

Client

Browser

|

(Private)

Data

Server

Web server

|

j - s

The basic structure of web traffic

47

Interacting with web servers

Resources which are identified by a URL
(Universal Resource Locator)

http://hww.cs.umd.edu/~mwh/index.html
Protocol Hostname/server Path to a resource
ftp Translated to an P index.html is static content i.e., a
https address by DNS fixed file returned by the server
tor (e.g.,128.8.127.3)

http://facebook.com/|delete.php?f=joel23&w=16
Path to a resource Arguments

Here, the file delete.php is dynamic content. i.e., the server
generates the content on the fly

48

http://www.cs.umd.edu/~mwh/index.html

HyperText Transfer Protocol (HTTP)

Client Server

HTTP Request

Browser Web server

User clicks

- Requests contain:
. The URL of the resource the client wishes to obtain
. Headers describing what the browser can do

- Request types can be GET or POST
. GET: all data is in the URL itself (no server side effects)
- POST: includes the data as separate fields (can have side effects)

49

HTTP GET Requests

http.//www.reddit.com/r/security

HTTP Headers
http://www.reddit.com/r/security

GET /rfsecurity HTTP/1.1

Host: www.reddit.com
Mozilla/5.0 (X11; U; Linux i686; en-US; nv:1.9.2.11) Gecko/20101013 Ubuntu/9.04 (jaunty) Firefox/3.6.11
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: 1SO-8859-1,utf-8;q=0.7,*;0=0.7
Keep-Alive: 115
Connection: keep-alive
Cookie: __ utma=55650728.562667657.1392711472.1392711472.1392711472.1; _ utmb=55650728.1.10.1392711472; _ utmc=55650...

User-Agent is typically a browser, but it can be wget, JDK, etc.

50

http://www.reddit.com/r/security

MY SUBREDDITS w FRONT - ALL - RANDOM | PICS - FUNNY - GAMING - ASKREDDIT - WORLDNEWS - NEWS - VIDEOS - IAMA - TODAYILEARNED

gl’eddit SECURITY |hot| new rising controversial top gilded

Refe rre r FZE How to protect yourself from identity theft (setnews con ‘
submitted 1 hour ago by vineetwalkdia
e

| comment share

security services in south africa (et sscurty

submitted 1 hour ago by armstrongsecuritysou
+] comment share

"""""]'"'I[Wéiéibb'éé'éhéék ofall time hits French site canetcom |
' nitted 15 hours ago by rajkumarselvaraj
{} ,,,,,,,,,,,,,,,,,,,, ??7‘,”)‘??‘,,?!‘?[? ,,,
“ Abusing The HTML5 Data-URI (ohg.guyanet
submitted 12 hours a y guya

comment share ‘

Protect Your Private Information With Our Shredding Services In Arlington
TX nstantshredding.com

submitted 1 hour ago by instantshredding

1 comment share

instantslveddig

HTTP Headers
http://www.zdnet.com/worst-ddos-attack-of-all-time-hits-french-site-7000026330/

GET /worst-ddos-attack-of-all-time-hits-french-site-7000026330/ HTTP/1.1

Host: www.zdnet.com

User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.9.2.11) Gecko/20101013 Ubuntu/9.04 (jaunty) Firefox/3.6.11
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: 1SO-8859-1,utf-8;q=0.7,%;0=0.7

Keep-Alive: 115 . .

Connection: keep-alive Referrer URL: the site from which

[Referer: Nttp://www.reddit.com/r/securnty | this re que st was issued.

HTTP POST Requests

Posting on Piazza

HTTP Headers

https://piazza.com/logic/api?method=content.create&aid=hrteve7t83et

Implicitly includes data
POST IIogic]api?method=content.creat*‘aid=hrteve7t83et HTTP/1.1] as a pa rt Of th e U R L

Host: piazza.com
User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US; rnv:1.9.2.11) Gecko/20101013 Ubuntu/9.04 (jaunty) Firefox/3.6.11

Accept: application/json, text/javascript, */*; q=0.01

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: 1S0-8859-1,utf-8;q=0.7,%;,q=0.7

Keep-Alive: 115

Connection: keep-alive

Content-Type: application/x-www-form-urlencoded; charset=UTF-8

X-Requested-With: XMLHttpRequest

Referer: https://piazza.com/class

Content-Length: 339

Cookie: piazza_session="DFwuCEFIGVEGWWHL]yuCvHIGtHKECCKL.5%25X+X+Ux%255M5%22%215%3F5%26x%26%26%7C%22%21r...
Pragma: no-cache

i {"method":"content.create","params":{"cid":"hrpng9g2nndos","subject":"<p>Interesting.. perhaps it has to do with a change to the ...]

Explicitly includes data as a part of the request’s content

52

HyperText Transfer Protocol (HTTP)

Client Server
HTTP Request

I Web server

Browser

HTTP Response

User clicks

- Responses contain:
. Status code
. Headers describing what the server provides

. Data
. Cookies (much more on these later)
. Represent state the server would like the browser to store on its behalf

53

HTTP

HTTP

Responses

Status Reason

version code phrase

Headers

Data .

| Set-Cookie: firstpg=0

:Tue, 18 Feb 2014 08:20:34 GMT

Server: Apache

Set-Cookie: session-zdnet-production=6bhqcaliOcbciagullsisac2p3; path=/; domain=zdnet.com
Set-Cookie: zdregion=MTI5LjluMTISLjE1MzplczplczpjZDJmNWYSYTdkODUIN2Q2YzZM5SNGU3M2Y1ZTRmMN(
Set-Cookie: zdregion=MTI5LjluMTI5LjE1MzplczplczpjZDJmNWYS5YTdkODUIN2Q2YzM5SNGU3M2Y1ZTRmN{G
Set-Cookie: edition=us; expires=Wed, 18-Feb-2015 08:20:34 GMT; path=/; domain=.zdnet.com
Set-Cookie: session-zdnet-production=590b97fpinqe4bg6lde4dvvqll; path=/; domain=zdnet.com
Set-Cookie: user_agent=desktop

Set-Cookie: zdnet_ad_session=f

Expires: Thu, 19 Nov 1981 08:52:00 GMT

Cache-Control: no-store, no-cache, must-revalidate, post-check=0, pre-check=0
Pragma: no-cache

X-UA-Compatible: IE=edge,chrome=1

Vary: Accept-Encoding

Content-Encoding: gzip

Content-Length: 18922

Keep-Alive: timeout=70, max=146

Connection: Keep-Alive

Content-Type: text/html; charset=UTF-8

<html> ... </html>

54

SQL Injection @ P,

SOL Injection

« SQL injection is a code injection attack that aims to steal or
corrupt information kept in a server-side database.

SQL Request
Web g Database

Request

Server

Server

Data Data

55

Relational Databases and SQL Queries

Client Server

Browser Web server

(Private)
Data

N~—_—

Need to protect this state
from illicit access and
tampering

\. J

56

Relational Data as Tables

« Arelational database organizes information as tables of records.

—— Table Name

) Row (Record)

Column Users <
Name Gender Age Email Password
Dee 28 dee .com j3i8g8ha
(Mac 7 bouncer .com alu23bt
Charlie 32 aneifjask@pp.com Oaergja
Dennis 28 imagod@pp.com 1bjb9a93
Frank 57 armed@pp.com ziog9gga

57

mailto:dee@pp.com
mailto:bouncer@pp.com
mailto:aneifjask@pp.com
mailto:imagod@pp.com
mailto:armed@pp.com

SQL (Standard Query Language)

SELECT Age FROM Users WHERE Name='Dee’;

UPDATE Users SET email='readgood@pp.com’
WHERE Age=32; -- this is a comment

INSERT INTO Users Values(‘Frank’, ‘M’, 57,

DROP TABLE Users;

28

<)

58

mailto:readgood@pp.com

Server-side data

 Typically want ACID transactions

Atomicity
- Transactions complete entirely or not at all
Consistency
- The database is always in a valid state
Isolation
- Results from a transaction aren’t visible until it is complete

Durability

- Once a transaction is committed, its effects persist despite, e.g.,
power failures

« Database Management Systems (DBMSes)
provide these properties (and then some)

