
CMSC 417 Computer Networks Fall 2021

Programming Assignment 0

Assigned: September 1 Due: September 14, 11:59:59 PM.

1 Updates

• Your server does not need to explicitly handle concurrent clients. Your server does need to
be able to handle a queue of clients that interact with your server one after the other.

2 Description

In this assignment, you will write both a TCP client and server. The client has a file and wants to
obtain the hashes for various segments of the data inside the file. The client will send a message
to the server for each segment, and the server will respond with the hash of the segment. The
client converts each hash into a hexadecimal string representation, and prints it to the console.
The server must be able to handle more than one client concurrently.

3 Protocol

Client Server

…

Acknowledgement

HashResponse 1

HashResponse N

HashRequest 1

HashRequest N

HashRequest 2

Initialization

Figure 1: Example message sequence diagram for the assignment protocol.

An overview of the protocol is shown in Figure 1. The protocol between the client and server
will use four types of messages: Initialization, Acknowledgement, HashRequest, and HashResponse.
The client starts by sending an Initialization message to the server, which informs the server of
the number of hashing requests that the client will make (denoted by the variable N). Afterwards,
the client sends N HashRequest messages to the server, where each HashRequest contains the data

1



segment to be hashed. The server responds to the Initialization message with an Acknowledge-
ment, which informs the client of the total length of the response. The server responds to each
HashRequest with a HashResponse that contains the hash of the corresponding data.

N

Data

4

(Length)

Client→Server
“Initialization”

Client→Server
“HashRequest”

Hash i
Server→Client

“HashResponse”

Type = 1
N = Number of Hash Requests

Type = 3

32

Server→Client
“Acknowledgement”

Type

Type = 2

4

Type = 4

Length

4

Type

4

Length

4

Type

4

i

4

Type

4

Figure 2: Format for messages used in the assignment protocol.

The formats for four types of messages are shown in Figure 2. Additional details for each type
of message are listed below.

Initialization (Client → Server)

1. Type: A 4-byte integer value in network byte order that is set to the value 1.

2. N: A 4-byte integer value in network byte order that corresponds to the number of HashRe-
quests that the client will send to the server.

Acknowledgement (Server → Client)

1. Type: A 4-byte integer value in network byte order that is set to the value 2.

2. Length: A 4-byte integer value in network byte order that denotes the total length of all
HashResponses. This should be equal to 40*N.

HashRequest (Client → Server)

1. Type: A 4-byte integer value in network byte order that is set to the value 3.

2. Length: A 4-byte integer value in network byte order that denotes the length of the Data
payload in number of bytes.

3. Data: A payload that holds the data segment to be hashed.

HashResponse (Server → Client)

1. Type: A 4-byte integer value in network byte order that is set to the value 4.

2. i: A 4-byte integer value in network byte order that denotes the zero-based index of the re-
sponse. That is, the first HashResponse should have this set to 0, while the last HashResponse
should have this set to N - 1.

2



3. Hash i: A 32-byte (256-bit) value that corresponds to the hash of the data contained in the
ith HashRequest sent by the client.

4 Server Implementation

The server will be a command line utility, which takes the following arguments:

1. -p <Number> = Port that the server will bind to and listen on. Represented as a base-10
integer. Must be specified, with a value > 1024.

2. -s <String> = Salt that the server will use in computing the hash. Represented as an ASCII
string. This is an optional argument.

An example usage is as follows:

server -p 41714 -s newsalt

The server listens for incoming connections on a TCP socket bound to the port specified in
the command line arguments. The server should be capable of handling multiple concurrent
client connections. Three ways of supporting concurrent connections are fork(), threading, or
select()/poll() (see their manpages for more information). For this assignment, forking is prob-
ably the easiest to implement.

For each HashRequest that the server receives from the client, the server must compute the
hash of the data using the SHA256 cryptographic message digest function. We provide code that
wraps OpenSSL functionality in a Git repository that you can clone as follows:

git clone fall417git@poole.cs.umd.edu:materials

The files are located in the ‘hash’ directory, and the header file contains information on the API. If
the salt is specified, the server will pass the salt to the wrapper functions as the binary representation
of the ASCII string, not including the NULL byte at the end of the string. Otherwise, if the salt
is not specified, the server passes a NULL pointer (and 0 length) to the wrapper functions.

The server is restricted to using at most 1 megabyte of memory for each client. Clients may
request a hash for a source file that exceeds those bounds. Thus, hashes must be calculated without
retaining the full message in memory. Additionally, the client may issue a large number of small
hashing requests. Therefore, the server should start sending HashResponses without waiting until
the Nth HashRequest has been received.

5 Client Implementation

The client will be a command line utility, which takes the following arguments:

1. -a <String> = The IP address of the machine that the server is running on. Represented
as a ASCII string (e.g., 128.8.126.63). Must be specified.

2. -p <Number> = The port that the server is bound listening on. Represented as a base-10
integer. Must be specified.

3. -n <Number> = The number of HashRequests (N) that the client will send to the server.
Represented as a base-10 integer. Must be specified, and have a value ≥ 0.

3



4. --smin <Number> = The minimum size for the data payload in each HashRequest. Rep-
resented as a base-10 integer. Must be specified, and have a value ≥ 1.

5. --smax <Number> = The maximum size for the data payload in each HashRequest. Rep-
resented as a base-10 integer. Must be specified, and have a value ≤ 224.

6. -f <File> = The file that the client reads data from for all HashRequests. Must be specified,
and have enough data to support N requests at the maximum length (specified by -n and
-smax respectively).

An example usage is as follows:

client -a 128.8.126.63 -p 41714 -n 100 --smin=128 --smax=512 -f /dev/zero

We provide code that parses the options for you, located in a Git repository that you can clone
as follows:

git clone fall417git@poole.cs.umd.edu:materials

The files are located in the ‘assignment0’ directory.
After reading in and parsing the command line arguments, the client will connect to the server

and start the protocol by sending the server an Initialization message. For each one of the N
HashRequests, the client must do the following:

1. Sample a random number L uniformly at random from the range [SMin,SMax].

2. Read in the next L bytes from the source file.

3. Construct and send the HashRequest message using the L bytes read as the data payload.

As the client receives each HashResponse, it must print out the index and thirty-two byte hash
contained therein. The index must be in decimal format, while the hash must be in lowercase
hexadecimal form. They should be separated by a colon and space (“: ”) and the hash must be
preceded by “0x”. Each HashResponse should be on a new line. Here is an example of a correct
line of output, corresponding to the 7th HashResponse received:

7: 0x147293be17d3bf0e482e44bba5271e3f2cfb1b638b5c59eea2a0fd74c0978509

6 Grading

Your project grade will depend on the parts of the project that you implement. Assuming each
part has a “good” implementation, the grades are as follows:

Grade Parts Completed

A Client and Server (Handles 1+ Clients)
B Client and Server (Handles 1 Client)
C Client Only

4



7 Additional Requirements

1. Your code must be submitted as a series of commits that are pushed to the origin/master
branch of your Git repository. We consider your latest commit prior to the due date/time to
represent your submission.

2. The directory for your project must be called ‘assignment0’ and be located at the root of
your Git repository.

3. You must provide a Makefile that is included along with the code that you commit. We will
run ‘make’ inside the ‘assignment0’ directory, which must produce two binaries ‘server’ and
‘client’ also located in the ‘assignment0’ directory.

4. You must submit code that compiles in the provided VM, otherwise your assignment will not
be graded.

5. Your code must be -Wall clean on gcc/g++ in the provided VM, otherwise your assignment
will not be graded. Do not ask the TA for help on (or post to the forum) code that is not
-Wall clean, unless getting rid of the warning is the actual problem.

6. You are not allowed to work in teams or to copy code from any source.

5


