Introduction to Parallel Computing (CMSC416 / CMSC818X)

Abhinav Bhatele, Department of Computer Science

Why machine learning for HPC?

- Proliferation of performance data
 - On-node hardware counters
 - Switch/network port counters
 - Power measurements
 - Traces and profiles
- Supercomputing facilites' data
 - Job queue logs, performance
 - Sensors: temperature, humidity, power

Abhinav Bhatele (CMSC416 / CMSC818X)

LIVE RECORDING 2

Types of ML-related tasks in HPC

Auto-tuning: parameter search

- Find a well performing configuration
- Predictive models: time, energy, ...
 - Predict system state in the future
 - Time-series analysis
- Identifying root causes/factors

Abhinav Bhatele (CMSC416 / CMSC818X)

LIVE RECORDING

Network congestion

- Responsible for performance degradation, variability and poor scaling
- Congestion and its root causes not well understood
- Study network hardware performance counters and their correlation with execution time
- Use supervised learning to identify hardware components that lead to congestion and performance degradation

Source node

Router			
mediate buffers			
otion Injection			
rmodiato no	de		

<u> </u>			
Router			
termediate buffers			
ception Injection	On the network		
0 0 0 0 0 0			
rmediate no	ode		

Hardware resource

Source node Network link Intermediate router

Gathering data for machine learning

Collect network hardware counters data on IBM Blue Gene/Q and use a functional simulator

• Use Rubik task mappings to get a range of execution times for the same application

Gathering data for machine learning

Collect network hardware counters data on IBM Blue Gene/Q and use a functional simulator

Hardware resourc

Source node Network link Intermediate route All

ce	Contention indicator
	Injection FIFO length Number of sent packets
er	Receive buffer length Number of hops (dilation)

• Use Rubik task mappings to get a range of execution times for the same application

Gathering data for machine learning

All Resources

Network Link

Intermediate Router

Feature

avg dilat max dila sum dila

avg bytes avg byte avg bytes max byte #links A

avg stall avg stalls avg stall max stal #links A

avg stall avg stalls avg stall max stal #links A

max inj

Source Node

name	Description
tion AO	Avg. dilation of average outliers (AO)
ation	Maximum dilation
ation AO	Sum of dilation of AO
es	Avg. bytes per link
AO	Avg. bytes per link for AO
es TO	Avg. bytes per link for top outliers (TO)
es	Maximum bytes on a link
O bytes	No. of AO links w.r.t. bytes
ls	Avg. receive buffer length
AO	Avg. receive buffer length for AO
Is TO	Avg. receive buffer length for TO
Ils	Maximum receive buffer length
O stalls	No. of AO links w.r.t. recv buffer length
lspp	Avg. number of stalls per rcv'd packet
AO	Avg. no. of stalls per packet for AO
Spp TO	Avg. no. of stalls per packet for TO
Spp TO	Maximum number of stalls per packet
Stallspp	No. of AO links w.r.t. stalls per packet
FIFO	Maximum injection FIFO length

Experimental Setup

- Three benchmarks: 5-point 2D Halo, 15-point 3D Halo, All-to-all over subcommunicators
- Two scientific applications: pF3D, MILC

			100 0.00						
	2D H	Halo	3D I	Halo	Sub .	A2A	MILC	pF3D	Total
#Nodes	16 KB	4 MB	16 KB	4 MB	16 KB	4 MB		5	
1024	84	84	84	84	84	84	208	94	806
4096	84	84	84	84	84	84	103	103	710
Total	168	168	168	168	168	168	311	197	1516
	1.1			- // \					

• Regression methods in scikit-learn: extremely randomized trees, gradient boosted regression trees

Predicting the execution time

- Scale the input features to values between 0 and 1
- Split samples into training and testing set (2/3 : 1/3)
- Generate all possible combinations (2¹⁹) of the 19 input features
- Parallel runs to try all combinations and report prediction scores

Evaluation criteria

Kendall rank correlation coefficient

• Coefficient of determination, R²

 $R^2(y,\hat{y}) = 1$

$$\sum_{\langle i \rangle = j < i} concord_{ij} \Big) / (\frac{n(n-1)}{2})$$

if
$$x_i \ge x_j \& y_i \ge y_j$$

if $x_i < x_j \& y_i < y_j$
otherwise

$$-\frac{\sum_{i}(y_{i}-\hat{y}_{i})^{2}}{\sum_{i}(y_{i}-\bar{y})^{2}}$$

Prediction on individual datasets

Abhinav Bhatele

Feature importance (individual datasets)

Feature ranks for RCC (GBRT, Huber loss function)

pF3D MILC

Technique for feature selection

- Create split of dataset into training and testing set
- Identify feature subsets that are important at different quantiles
- Use the subsets to identify new feature importances

• Learn GBRT regressor with quantile loss function at 0.1 quantile and 0.9 quantile

Abhinav Bhatele

15

• Average and maximum length of receive buffers

- Average and maximum length of receive buffers
- Average load on network links

- Average and maximum length of receive buffers
- Average load on network links
- Maximum length of injection FIFOs

on 128 nodes of Cori in 2018-2019

on 128 nodes of Cori in 2018-2019

Data analytics study to understand variability

- Primarily focus on variability arising from sub-optimal communication on the network
- Set up controlled experiments on a dragonfly-based Cray system:
 - Submit jobs of the same applications periodically in the batch queue for ~ 4 months
- Collect network hardware counters per iteration for each job and other data described later
- Use machine learning to analyze the gathered performance data

Run four applications in control jobs

- Gather network hardware counters on Aries routers connected to my jobs' nodes
- Hardware counters and execution time recorded per iteration

of nodes
128
512
128
512
128
128

Input Parameters

- -P 32 16 16 -n 32 32 32 -problem 2 -P 32 32 32 -n 32 32 32 -problem 2
- n128_large.in
- n512_large.in
- -f nlpkkt240.bin -t 1E-02 -i 6
- custom_8k.cmg 4 2 4 4 4 0.04

Other sources of data for analytics

- Job queue logs
 - Information about jobs running concurrently with a specific control job
- Job placement
 - Number of unique groups and routers to which a control job is assigned
- System-wide counters for all Aries routers gathered using LDMS
 - All routers: all routers connected to compute or I/O nodes
 - I/O routers: only routers connected to I/O servers

Analysis I: Identifying predictors of deviation

- application
 - Each iteration is treated as an independent sample
- We create models to predict the deviation of the execution time instead of the absolute time
- feature elimination (RFE) to study feature importances

• Execution times and network counters data are available for each iteration of the

We use gradient boosted regression to generate a predictive model and recursive

Results: Identifying predictors of deviation

Relevance scores of each counter in predicting the deviation from mean behavior for the different datasets.

Results: Identifying predictors of deviation

Relevance scores of each counter in predicting the deviation from mean behavior for the different datasets.

AMG 128 nodes AMG 512 nodes MILC 128 nodes MILC 512 nodes miniVite 128 nodes UMT 128 nodes

Network switch congestion important for some apps while end-point congestion more important for others

Analysis II: Forecasting within-run variation

- Idea is to predict next k time steps based on knowledge of *m* previous time steps
- Use a sliding window approach to create the training set
- We use the popular scalar dot-product attention model along with a fully connected neural network
- We explore using different groups of features to understand the impact on model accuracy

Results: Forecasting within-run variation

MAPE = Mean Absolute Percentage Error, m = temporal context, k = predicting future time steps

Abhinav Bhatele

25

Results: Forecasting within-run variation

MAPE = Mean Absolute Percentage Error, m = temporal context, k = predicting future time steps

Abhinav Bhatele

25

Analysis III: Using only system data

- Use system state before a job starts running to predict performance
- No application-specific features are used
- Train a 2-layer neural network that combines multiple datasets
- Goal: develop application-agnostic models

LDMS gathers data every second

Abhinav Bhatele

Control Job 'x'

Ian Costello et al. Analytics of Longitudinal System Monitoring Data for Performance Prediction. https://arxiv.org/abs/2007.03451

Based on global routers

Results: Potential impact on job schedulers

- features
- Based on whether values of these features are above or below the median

Classify jobs into likely fast or likely slow based on values of three most important

Results: Potential impact on job schedulers

- features
- Based on whether values of these features are above or below the median

Classify jobs into likely fast or likely slow based on values of three most important

Can we minimize performance variability?

- Topology-aware job scheduling
- Self-tuning systems
 - Adaptive congestion-aware routing
 - Adaptive scheduling of jobs

Availability of large-scale monitoring data

- data: LLNL/LC, LBNL/NERSC, ANL/ALCF
- filesystem, power, cooling

• Several Department of Energy laboratories are using LDMS to record monitoring

• Vast quantities of rich but noisy data: on-node (flops, memory, caches), network,

Variability prediction

- Ran a large number of control jobs (hundreds per application): 7 different applications
- Train a classifier (AdaBoost) to predict if an app will experience variation

Input source	Counters	Features	Description	
sysclassib	62	186	infiniband counters	
opa_info	62	186	Omni-Path switch counters	
lustre2_client	44	132	Lustre client metrics	
MPI benchmarks	3	9	Execution time	Ŭ
Proxy applications	-	1	Compute Intensive	\
	-	1	Network Intensive	
	-	1	I/O Intensive	

Comparing FI Scores with All vs. Job-only System Data

Self-tuning job scheduler

- Modify the job scheduler to:
 - Obtain recent values of system counters
 - Predict if the next job in the queue will experience variability
 - If yes, put it back in the queue and try scheduling the next job
- Leverage the Flux scheduler framework developed at LLNL
- Enables us to run a scheduler within a job partition allocated by the system scheduler (slurm)

Application performance

Scheduler throughput

Identifying best performing code variants

- Many computational science and engineering (CSE) codes rely on solving sparse linear systems
- Many choices of numerical methods
- Optimal choice w.r.t. performance depends on several things:
 - Input data and its representation, algorithm and its implementation, hardware architecture

Abhinav Bhatele (CMSC416 / CMSC818X)

• Application performance depends on many factors:

• Input parameters, algorithmic choices, runtime parameters

Abhinav Bhatele (CMSC416 / CMSC818X)

• Application performance depends on many factors:

- Input parameters, algorithmic choices, runtime parameters
- Performance also depends on:
 - Code changes, linked libraries
 - Compilers, architecture

Abhinav Bhatele (CMSC416 / CMSC818X)

LIVE RECORDING 36

40

• Application performance depends on many factors:

- Input parameters, algorithmic choices, runtime parameters
- Performance also depends on:
 - Code changes, linked libraries
 - Compilers, architecture
- Surrogate models + transfer learning

Abhinav Bhatele (CMSC416 / CMSC818X)

LIVE RECORDING 36

40

Abhinav Bhatele (CMSC416 / CMSC818X)

UNIVERSITY OF MARYLAND

Questions?

Abhinav Bhatele 5218 Brendan Iribe Center (IRB) / College Park, MD 20742 phone: 301.405.4507 / e-mail: bhatele@cs.umd.edu