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Previous Work

• Differentiable fluids
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• Adjoint method

• Neural networks

[McNamara et al.2004]

[Holl et al.2020] [Um et al.2020]

Problems
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• Lack of solid-to-fluid coupling

• No control method for solids within fluids

• Scalable and efficient differentiable solver
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Our Approach
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• Variational principle for one-way solid-fluid coupling

• Adjoint method applied to the entire simulation steps

• Neural networks for control force learning

Method
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Our Method
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• One-way fluid-solid coupling

• Adjoint method for gradientcomputation

• Neural networks for control force learning

One-way fluid-solid coupling
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• Divergence-free constraints

• Free-slip boundary condition

• Variational principle: optimization for pressure

!= argmin ("#($%,!) + "&('%,!))
Pressure

Objective function for fluids

Objective function forsolidsFluid velocity

Solid velocity
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Incompressible Velocity Fields
• Optimization for pressure

!= argmin ("#($ %,!) + "&('%,!))

• Correct fluid velocity
$%+Δ% = $%− Δ(−1)!

• Matrix formnotation

$%+Δ%
'%+Δ% = * +

, -
$%
'%
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Gradient Computation with AdjointMethod

Forward simulation Forward simulation Forward simulation

Backwardcomputation Backwardcomputation Backwardcomputation

• Costly gradient computation

• Expensive finite-difference approximation

• High overhead of low-level automaticdifferentiation

• Adjoint method

• Forward state update

• Backward adjoint stateupdate
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Backward Pressure Solve

!�"
#�" = $ %

& '
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#�"+ Δ"

• Backward adjoint state update

• Forward pressure solve with velocityupdate
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Transpose
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Neural Net Integration

• Control input predictions

• Back propagation through neural networks
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Result

13

Implementation and Experiment Details
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• C++implementation

• Pytorch 1.5 for neuralnetworks

• Intel Core i5-7200U with 8GBRAM
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Comparison to Numerical Differentiation
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Comparison to PhiFlow

Our method is 1-2 orders of magnitude faster by avoiding

low-level automatic differentiation employed in PhiFlow.
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Comparison to Low-Level Automatic Differentiation

Our method is 1-2 orders of magnitude faster by avoiding

low-level automatic differentiation.
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Summary
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• Variational formulation for one-way solid-fluidcoupling

• Adjoint method for gradientcomputation

• Learning and control framework with neuralnetworks
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Future Work
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• Extensions to viscous fluids and deformable solids

• Experiments in the real-worldenvironments
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