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Why variational methods?

Quantum Chemistry on Google’s Quantum Computer

Google AI Quantum and col-

laborators used the Sycamore
quantum processor (based on
superconducting qubits) to simulate
the energy of the diazene molecule
(H2N2) in various conformations.

The simulations were performed on
up to 12 qubits, involving up to 72
two-qubit gates. The result was
published on the Science journal in
August 2020.
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Why variational methods?

Towards Universal Quantum Computer

Figure: We are currently in the NISQ (Noisy Intermediate Scale Quantum
computing)[Pre18] era: we only have access to quantum computers with
50-100 qubits with noise.1

1Picture credited to Nabil Laoudji.
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Why variational methods?

Quantum advantage with NISQ devices

John Preskill believes NISQ technology may be able to perform tasks
which “surpass the capabilities of today’s classical digital computers”,
but “the 100-qubit quantum computer will not change the world right
away”.

A strategy that makes the best use of NISQ devices must account for:
Limited numbers of qubits;
Limited connectivity of qubits;
Coherent and incoherent errors that limit quantum circuit depth.

Variational Quantum Algorithms (VQAs): the leading strategy to obtain
quantum advantage on NISQ devices.
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Overview
Classical bits

0 or 1

Quantum bits

𝛼 0 + 𝛽|1⟩

Fock state


𝑗∈ℕ

𝑐𝑗|𝑗⟩

Digital Classical gates and 
circuits

Quantum gates 
and circuits

Ladder operators

Analog Evolution of EM fields Evolution of waves

Advanced topics



From classical bits to qubits

• Classical bit: Represented by voltage
• High and low voltage represents 0 and 1.

• Quantum bit: Represented by energy levels
• The two lowest levels are |0⟩ and |1⟩.

• Quantum bit can be “between” |0⟩ and |1⟩.
• This is called superposition.

High voltage changes to low voltage

Multiple energy levels of a particle



Superposition

• The cat state: 1
2
( 0 + |1⟩).

• If we measure it, it has 50% probability to be 0 and another 50% 
probability to be 1.

• Bloch sphere:
• Every point inside it represents a qubit’s state.



Qubits

• A qubit can be described by 2-d vector:

𝛼 0 + 𝛽 1 =
𝛼
𝛽

• A system with multiple subsystems is constructed by tensor product.

𝐴2×2 ⊗ 𝐵 = 𝑎00𝐵 𝑎01𝐵
𝑎10𝐵 𝑎11𝐵

• An 𝑛-qubit system can be represented by 2𝑛-dim vector.
• The space of such states is a 2𝑛-dim Hilbert space.



Entanglement

• Non-locality of quantum states: EPR pair
1
2
( 00 + |11⟩).

• Local observation has non-local effect:
• When you measure one of the two qubits, you “foresee” the 

measurement of the other one.



From classical gates to quantum gates

• Quantum gates:
• Unitary transformation 𝑈: 𝜑 → 𝑈 𝜑 .

• Example: applying 𝑋 gate
𝑋 0 = 1 , 𝑋 1 = 0 .

• Example: applying Hadamard gate
𝐻 0 =

1
2
( 0 + |1⟩),

𝐻 1 =
1
2
( 0 − |1⟩).

• Classical gates:
• Mapping {0, 1}𝑛→ 0, 1 𝑚

• Example: applying NOT gate
~0 = 1, ~1 = 0.

• Example: assigning gate
0𝑏 → 00, 1𝑏 → 11.



Reversibility and non-cloning

• Quantum gates are unitary (square matrices).
• Information is preserved.

• Fact 1: Every quantum gate/circuit is reversible.
• Fact 2: Operations are linear.
• Fact 3: You cannot copy an arbitrary state.

• There is no unitary 𝑈 such that
𝑈 𝜓 0 = 𝜓 𝜓 .

• You cannot erase a state as well.



Commonly used quantum gate and circuit

• Example one-qubit gates: Pauli matrices:
• They are 180° rotations along axis in the Bloch sphere.

𝑋 = 0 1
1 0 , 𝑌 = 0 −𝑖

𝑖 0 , 𝑍 = 1 0
0 −1

• Example two-qubit gate: Controlled-NOT gate (CNOT).
• Flips the second qubit if the first qubit is 1.

• Example circuit:



Second quantization

• Another model that physicists love.
• Usually, it is used to describe bosonic or fermionic system.

• Quantizing how many particles are in a pool.
• |𝑛⟩ represents 𝑛 particles.

• Superposition exists as well.
• A Fock state is σ𝑛≥0 𝑐𝑛|𝑛⟩ in an infinite-dimensional Hilbert space.



Ladder operators

• Fock states are manipulated by ladder operators.

• Ladder operators create or annihilate particles in the pool.
• Annihilation operator 𝑎 lowers the number of particles of a Fock state.

𝑎 𝑛 = 𝑛 𝑛 − 1 .
• As its counter-part, creation annihilation operator 𝑎† increases the 

number of particles:
𝑎† 𝑛 = 𝑛 + 1 𝑛 + 1



Ladder operators in matrix view

• They can be written as infinite-dimensional matrices:



Breaking down the gates
—— from digital to analog

• Classical gates obey 
physical law of EM fields.

• The Maxwell’s equations.

• Quantum gates obey 
quantum mechanics.

• The Schrodinger equation.



Hamiltonian

• Physically, Hamiltonian is the sum of kinetic and potential energy 
in the system.

• Mathematically, time-dependent Hamiltonian is a mapping from 
time to a Hermitian matrix.

• Examples: 𝐻1 𝑡 = 𝑋 ⊗ 𝑋 + 𝑍 ⊗ 𝑍, 𝐻2 𝑡 = cos 𝑡 𝑎𝑎†.

• Hamiltonian determines how a quantum system evolves.



Schrödinger equation

• How a state time-evolve under a Hamiltonian.

𝑖
d
d𝑡

𝜓 𝑡 = 𝐻 𝑡 𝜓 𝑡 .
• The change of physical system subject to the “force”.

• If 𝐻 𝑡 ≡ 𝐻0 which is time independent, the solution is “trivial”:
𝜓 𝑡 = 𝑒−𝑖𝐻0𝑡 𝜓 0 .

• Otherwise, the solution will be “non-trivial”:
𝜓 𝑡 = 𝑒 −𝑖𝐻 𝜏 d𝜏 𝜓 0 .



Parameterizing the evolution

• To have something to differentiate, we need to parameterize the time-
dependent Hamiltonian.

• A typical model is:
𝐻 𝑡 = 𝐻0 +

𝑗=1

𝑛
𝑢𝑗 𝑡 𝐻𝑗 .

• 𝑢𝑗 is a time-dependent complex function.
• 𝐻𝑗 is a time-independent Hermitian matrix.
• The system evolves for time interval 0, 1 .

• We then send the “pulses” 𝑢𝑗 to the machine for execution.



Quantum optimal control

• Trying to find the best 𝑢𝑗(𝑡)’s such that the evolution fulfills:
• The evolution results is close to a target state |𝜓target⟩.
• The evolution transformation is close to a unitary 𝑈target.

• Let the evolution be 𝑉 = 𝑒0
1 𝐻 𝜏 d𝜏.

• Loss function:
• For the first one: 1 − ⟨𝜓target|𝑉|𝜓0⟩.
• For the second one: 1 − tr 𝑈target𝑉† .



A solution in the literature

• Discretization: divide the time interval to mini-intervals 𝑡𝑘, 𝑡𝑘+1 .
• For 𝑡𝑘, 𝑡𝑘+1 , the Hamiltonian keeps the same:

𝐻 𝑘 (𝑢1𝑘, 𝑢2𝑘, … , 𝑢𝑛𝑘) = 𝐻0 +
𝑗=1

𝑛
𝑢𝑗𝑘𝐻𝑗

• Then the evolution approximately is

𝑉(𝑢11, … , 𝑢𝑛𝑚) ≈ෑ
𝑘=𝑚

1
𝑒−𝑖𝐻 𝑘 (𝑢1𝑘,𝑢2𝑘,…,𝑢𝑛𝑘)Δ𝑡𝑘

• Differentiation goes naturally.
• This is typically done on a classical computer. (GRAPE algorithm)



SWITCH TO OTHER SLIDES
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How to compute gradients?

Parameter Shift

Problem: Solving optimization problems on quantum computers using
gradient-based methods.

Objective function: We will start with a general form and give a
concrete example in Chapter 3.

Current Methods: Pulse-based parametrization.
Advantage: Easy to compute gradients.
Disadvantage: Not efficient enough. Not analog.
We will talk about how to differentiate the pulse-based
representation in the following slides.

Our goal: How to find a more efficient representation (with
differentiation) for analog simulation.
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How to compute gradients?

Parameter Shift

In Yuxiang’s slides, the state | (T)i at time T is,

| (T)i = e
R T

0 �iH(t)dt | (0)i (1)

where
H(t) =

X

j

uj(t)Hj (2)

uj(t)s are the parameters to optimize.
A scalar loss function l can be defined as,

l = h (T)|B | (T)i (3)

Bra-ket notation: hv1|M |v2i = v̄1
TMv2
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How to compute gradients?

Parameter Shift
uj(t) are continuous functions and hard to optimize. People nowadays
discretize uj(t) in time to perform optimization. Time interval [0, T] is
divided to mini-intervals [tk, tk+1]. During each intervals, the H(t) keeps
constant.

H(tk) =
X

j

ujkHj (4)

In this setting, the state | (T)i can be written into,

| (T)i =
Y

k

e�iH(tk)�t | (0)i (5)

=
Y

k

Y

j

e�iuj,kHj�t | (0)i (6)

=
Y

k

Y

j

Uj(uj,k) | (0)i (7)
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How to compute gradients?

Parameter Shift
Let’s do the differentiation

l = h (T)|B | (T)i (8)
@l
@ujk

=

⌧
@ (T)
@ujk

����B | (T)i+ h (T)|B
����
@ (T)
@ujk

�
(9)

=

⌧
@ (T)
@ujk

����B | (T)i (10)

+ h (T)|B
��..Uj+1(uj+1,k)(�i�tHj)Uj(uj,k)Uj�1(uj�1,k)...| (0)

↵
(11)

= hv|Bj |vi (12)

where Bj is also a Hermitian matrix that can be computed by quantum
computers,

|vi =
��Uj(uj,k)Uj�1(uj�1,k)...| (0)

↵
(13)

Bj = �t[HjUj+1(uj+1,k)...B � iB..Uj+1(uj+1,k)Hj] (14)
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How to compute gradients?

Parameter Shift

More details about the parameter shift technique can be found in
[MNKF18], [SBG+19]).

The next lecture will also elaborate on this method.

Problems: how to compute the gradient for analog simulation? How to
design a programming language for the differentiation?
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Quantum Approximate Optimization Algorithm (QAOA)

Background

The Quantum Approximate Optimization Algorithm (QAOA) was
proposed by Farhi et. al. [FGG14] in 2014. This algorithm produces
approximate solutions for discrete optimization problems.

A discrete optimization problem is to find the maxima (or minima) of
a function defined over a discrete domain.

Discrete optimization problems include Boolean Satisfaction problem
(SAT), Traveling salesman problem (TSP), Max-Cut problem, etc.
These problems are usually NP-hard.
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Quantum Approximate Optimization Algorithm (QAOA)

Max-Cut problem

Suppose G = (V,E) is a graph. A cut of a graph is a partition of the
vertices in the graph into two disjoint subsets. We can write a cut as
C = (S, T).

Figure: A cut on a 5-node graph.

In the above graph, we have a cut C = ({1, 3, 5}, {2, 4}).
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Quantum Approximate Optimization Algorithm (QAOA)

Max-Cut problem
The size of a cut C = (S, T) is the number of edges between the set S
and the set T. A cut C = (S, T) is called maximal if it has the largest
size among all cuts.

The Max-Cut problem is to find a maximal cut of the graph.

Figure: An example of a maximal cut.

The Max-Cut problem has applications in various fields. e.g.,
theoretical physics, circuit design, etc.
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Quantum Approximate Optimization Algorithm (QAOA)

Encoding Max-Cut by bit strings

We can represent a cut C = (S, T) of an n-node graph G by an n-bit
string:

C = b1b2...bn,

with bj = 1 if the j-th node is in S, and bj = 0 of it is in T.

For example, the cut in Figure 2 can be expressed as C = 10101.

This problem is known to be NP-complete.
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Quantum Approximate Optimization Algorithm (QAOA)

Encoding Max-Cut by qubits

Suppose s is a bit string specifying a cut C = (S, T), we can use the
computational basis |si in a n-qubit register to represent the same cut
C. For example, |10101i.

Recall that �j
z is the Pauli-Z operator at the j-th site: �j

z |0ij = |0ij and
�j

z |1ij = � |1ij. Define a new operator

Cj,k =
1
2
�
1 � �j

z ⌦ �k
z
�
.

Exercise: check that

h00|C1,2|00i = h11|C1,2|11i = 0,

h10|C1,2|10i = h01|C1,2|01i = 1.
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Quantum Approximate Optimization Algorithm (QAOA)

Encoding Max-Cut by qubits

�z =


1 0
0 �1

�
,�1

z ⌦ �2
z =

2

664

1 0 0 0
0 �1 0 0
0 0 �1 0
0 0 0 1

3

775 (15)

|00i =
��[1, 0, 0, 0]T

↵

|01i =
��[0, 1, 0, 0]T

↵

|10i =
��[0, 0, 1, 0]T

↵

|11i =
��[0, 0, 0, 1]T

↵
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Quantum Approximate Optimization Algorithm (QAOA)

Encoding Max-Cut by qubits

Let |si be a cut of a graph G, and there is an edge (j, k) 2 E. We find
that

⌦
s
��Cj,k|s

↵
= 0 if the vertices j, k are in the same subset; otherwise,⌦

s
��Cj,k|s

↵
= 1.

It is now clear that if we define a “size” operator

C =
X

(j,k)2E

Cj,k,

then hs|C|si is the size of the cut |si.

C is a Hermitian matrix, for a quantum state | i in the register, we can
perform a measurement by C and the result is

h |C| i = Tr [C | i h |] . (16)
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Quantum Approximate Optimization Algorithm (QAOA)

Encoding Max-Cut by qubits

Note that the operator Cj,k is diagonal in computational basis, we can
directly measure a state | i and compute

⌦
 
��Cj,k| 

↵
. An n-node

(undirected) graph can have at most n(n�1)
2 = O(n2) edges, so we can

always compute h |C| i efficiently by

h |C| i =
X

(j,k)2E

⌦
 
��Cj,k| 

↵
.

In fact, we find that the operator C is diagonal, and its largest
eigenvalue is the largest size of a cut. In other words,

|MaxCut| = max
| i

h |C| i .

Idea: perhaps we can prepare some state | i that approximates a
max-cut state |smaxi?
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Quantum Approximate Optimization Algorithm (QAOA)

QAOA for Max-Cut

The idea of QAOA is to introduce a parametrized quantum circuit
U(�,�) with p layers:

U(�,�) = U(B,�p)U(C, �p)...U(B,�1)U(C, �1), (17)

where U(M, t) = e�itM is a parametrized evolution operator.

Here, B is called a driving operator, and we must have [B,C] 6= 0. A
canonical choice of B is the sum of all single site Pauli-X operators,

B =
nX

l=1

�l
x.
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Quantum Approximate Optimization Algorithm (QAOA)

QAOA for Max-Cut

We initialize the register with the uniform superposition over all
computational basis:

|si = |+i ⌦ ...⌦ |+i ,

and the quantum state after implementing the quantum circuits U(�,�)
is now

|�,�i := U(�,�) |si . (18)

Define
Fp(�,�) :=

D
�,�

���C
����,�

E
. (19)

QAOAp formulation of Max-Cut:

Mp := max
�,�

Fp(�,�).
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Quantum Approximate Optimization Algorithm (QAOA)

How to train the QAOA algorithm?

Here we borrow the word “train” from machine learning, which
basically means “to optimize”.

1. Gradient-free method: the function value of Fp(�,�) can be
efficiently evaluated. For fixed p, we can make regular mesh grid in the
parameter space and compute function values on this grid. Other
heuristic methods like Nelder–Mead can be used as well.

2. Gradient-based method: for QAOA, the gradient can also be
efficiently computed (through a technique called parameter shift
[MNKF18], [SBG+19]).
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Quantum Approximate Optimization Algorithm (QAOA)

Reference I

Edward Farhi, Jeffrey Goldstone, and Sam Gutmann, A quantum
approximate optimization algorithm, arXiv preprint
arXiv:1411.4028 (2014).

Kosuke Mitarai, Makoto Negoro, Masahiro Kitagawa, and Keisuke
Fujii, Quantum circuit learning, Physical Review A 98 (2018), no. 3,
032309.
John Preskill, Quantum computing in the nisq era and beyond,
Quantum 2 (2018), 79.

Maria Schuld, Ville Bergholm, Christian Gogolin, Josh Izaac, and
Nathan Killoran, Evaluating analytic gradients on quantum
hardware, Physical Review A 99 (2019), no. 3, 032331.
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SWITCH BACK



Unknown areas



A quantum solution?

• Is it possible to use a quantum evolution to compute the 
differentiations?

• Motivation: it is possible for circuit model.
• Variational quantum eigen-solver.
• Differentiable quantum while-language.

• A parametrized circuit’s gradients can be obtained by another 
circuit.



Another parametrization?

• Our target is to find optimal pulse wave.

• Discretization returns non-smooth results.
• High frequency signals are hard to simulate on machines.

• Parametrize by Fourier transformation? Or wavelet transformation?



Other applications?

• Current applications of optimal control are state preparation and 
gate synthesis.

• Variational quantum eigensolver finds ground states.

• Are there other ways to formulate the loss function?



A differentiable PL?

• We don’t have a PL to describe Hamiltonian evolution, for now.

• How to develop a differentiable variant of it?

• How to write down the rules for differentiation?
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