Generating Constrained Random Data with Uniform Distribution

Authors: Koen Claessen, Jonas Duregard, and Michał H. Pałka Presented By: Segev Elazar Mittelman

Meet Randy the Random Tester

```
data Nat = Z | Suc Nat
```

data ListNat $=$ Nill | Cons Nat ListNat

Good Random Testing Relies on Good Generators

I mean you could, I guess... but you may want to reconsider.

Okay rad, so every time I have a new ADT to test I just write a new generator by hand! Right?

EF

Mr. Bot's Reasons to Reconsider

- Writing a good generator is not trivial
- Risk of bugs \& potentially large time/effort investment in tuning generator
- Unknown value distribution \rightarrow ? Counterexamples never generated
- New handwritten generator for each new precondition predicate?
- Yes, sounds like fun! \rightarrow Aight, see you in a month or two...
- No, just filter values \rightarrow And what if precondition is rare among values?...

All Lists of Naturals Using Exactly 17 Constructors

All SORTED Lists of Naturals Using Exactly 17 Constructors

> "You've got to ask yourself one question. Do I feel lucky? Well, do ya, [Randy]?" ~ Dirty Harry (1971)

> Oh okay, that sounds kinda rough to deal with now that you say.

EF

Solution

Implementation

Don't handwrite, instead derive generators from data definition.

Give all derived generators uniform distributions.

Don't filter on predicate, find general subsets that all fail predicate and prune them.

Convert Sized Spaces to Finite Sets and recursively index with naturals.
Use common structures in ADTs to define Spaces of generated values.

Use Haskell's Laziness to specialize indexed value step by step until predicate always true or always false.

Extract ADT Essence

```
data Space a where
    Empty :: Space a
    Pure :: a -> Space a
    (:+:) :: Space a -> Space a -> Space a
    (:*:) :: Space a1 -> Space a2 -> Space (a1,a2)
    Pay :: Space a -> Space a
    (:$:) :: (a1 -> a2) -> Space a1 -> Space a2
```

(<*>) :: Space (a -> b) -> Space a -> Space b
$s 1<*>s 2=(\backslash(f, a)->(f a)): \$:(s 1$:*: sh)

The Space of the Nat ADT

data Nat = Z | Suc Nat

spaceNat :: Space Nat
spaceNat = Pay (Pure Z :+: (Suc :\$: spaceNat))

The Space of the ListNat ADT

data ListNat = Nill | Cons Nat ListNat

```
spaceListNat :: Space ListNat
spaceListNat = Pay (Pure Nill :+: (Cons :$: spaceNat Main.<*> spaceListNat))
```


The Space of the Tree ADT

data Tree = Leaf | Node Nat Tree Tree

Let's try to figure it out together.

The Space of the Tree ADT

data Tree = Leaf | Node Nat Tree Tree

Recursive Structure of FinSet

```
data FinSet a where
    EmptySet :: FinSet a
    Single :: a -> FinSet a
    Product :: FinSet a1 -> FinSet a2 -> FinSet (a1, a2)
    Union :: FinSet a -> FinSet a -> FinSet a
    Apply :: (a1 -> a2) -> FinSet a1 -> FinSet a2
```


Measuring FinSet Cardinality

finSetCardinality :: FinSet a -> Integer
finSetCardinality EmptySet = 0
finSetCardinality (Single _) = 1
finSetCardinality (Product finSetA finSetB) =
finSetCardinality finSetA * finSetCardinality finSetB
finSetCardinality (Union finSetA1 finSetA2) =
finSetCardinality finSetA1 + finSetCardinality finSetA2
finSetCardinality (Apply _ finSet) = finSetCardinality finSet

Example FinSet

$\{$ Suc $x \mid x \in\{0,1,2\}\} \times\{A, B\}$

```
example1 :: FinSet (Integer, Char)
example1 = Product
    (Apply Suc (Union (Single 0) (Union (Single 1) (Single 2))))
(Union (Single 'A') (Union (Single 'B') EmptySet))
```

Show That Cardinality Is 6

Indexing Uniformly into FinSets

```
indexFin :: FinSet a -> Integer -> Maybe a
indexFin EmptySet _ = Nothing
indexFin (Single a) 0 = Just a
indexFin (Single _) _ = Nothing
indexFin (Union fsa _) i | i < finSetCardinality fsa = indexFin fsa i
indexFin (Union fsa fsb) i = indexFin fsb (i - finSetCardinality fsa)
indexFin (Product fsa fsb) i = do
    fst <- indexFin fsa (i `div` finSetCardinality fsb)
    snd <- indexFin fsb (i `mod` finSetCardinality fsb)
    return (fst, snd)
indexFin (Apply f finSet) i = do
    val <- indexFin finSet i
    return (f val)
```


From Sized Spaces to FinSets

```
sized :: Space a -> Integer -> FinSet a
sized Empty _ = EmptySet
sized (Pure a) 0 = Single a
sized (Pure _) _ = EmptySet
sized (Pay _) 0 = EmptySet
sized (Pay a) k = sized a (k - 1)
sized (a :+: b) k = Union (sized a k) (sized b k)
sized (f :$: a) k = Apply f (sized a k)
sized (a :*: b) k = sizedHelper (a :*: b) 0 k
    where
        sizedHelper :: Space a -> Integer -> Integer -> FinSet a
        sizedHelper (a :*: b) k1 k | k1 <= k =
            Union (Product (sized a k1) (sized b (k - k1))) (sizedHelper (a :*: b) (k1 + 1) k)
        sizedHelper
```

\qquad

``` = EmptySet
```


Uniformly Indexing Into ADT Spaces

indexSized :: Space a -> Integer -> Integer -> Maybe a indexSized space size index = indexFin (sized space size) index

Let's try this out

 for more interesting examples. It's demo time!Sweet! But what about those PREDICATES!?!
We'll get to them, but first, my friend, we have to learn how to get laaaaaazy.

EF

Laziness/Call By Need Evaluation

Definition: Terms are only evaluated when needed, and only needed portions of terms are evaluated, leaving remainder of term unevaluated.

Examples:

const $(2+5)$ undefined $==7$	$\begin{aligned} & \text { let } x=1: x \text { in } \\ & \quad \text { tail } x \end{aligned}$
isS : : Nat -> Bool	
isS Z = False	--V
isS (S _) = True	
iss (S undefined) == True	let $\mathrm{x}=1$: x in length x

Idea: If we define predicates lazily, we can find entire sets of predicate fulfilling or failing values instead of singular values

```
valid :: (a -> Bool) -> Maybe Bool
valid p | crashes (p undefined) = Nothing
valid P = Some (p undefined)
```

valid isS == Nothing --needs to inspect input so fails
valid (isS . S) == Just True --(isS . S) n == True for all naturals n.

Lazy Predicate-Guided Indexing

index :: (a -> Bool) -> Space a -> Int -> Integer -> Space a
index predicate (constructor :\$: space') size index = case valid predicate' of Just _ -> constructor :\$: space'
Nothing -> constructor :\$: index predicate' space' size index where predicate' = predicate . constructor
index isS (Suc :\$: spaceNat) s $0==$ Suc : $\$:$ spaceNat
index is2S (Suc :\$: spaceNat) s $0==\dot{\sim}$. Suc :\$: index (is2S . Suc) (Suc :\$: spaceNat) s' 0 == Suc :\$: (Suc :\$: spaceNat)

Specialize Space lazily composing one
constructor at a time
until predicate is valid.

If Just True
If Just False 1

Generate random index for pruned space.

Test using value from Space that satisfies predicate.

Specialize Space lazily composing one
constructor at a time until predicate is valid.

Generate random index for pruned	If Just True
space.	
	Test using value from
	Space that satisfies predicate.

Let's try to see

 how effective lazy pruning is.It's demo time!

I get it now Mr. Bot, thanks a bunch!

Awesome, now
does anyone have questions?

EF

Thank you for listening, any questions?

