
Generating Constrained Random
Data with Uniform Distribution
Authors: Koen Claessen, Jonas Duregard, and Michał H. Pałka
Presented By: Segev Elazar Mittelman

Meet Randy the
Random Tester

I have a bunch of
properties I want
to test on the
subset of values
from my ADTs that
satisfy predicates!

Good Random Testing
Relies on Good Generators

Okay rad, so every
time I have a new
ADT to test I just
write a new
generator by hand!
Right?

I mean you could, I
guess… but you
may want to
reconsider.

Mr. Bot’s Reasons to Reconsider

● Writing a good generator is not trivial

○ Risk of bugs & potentially large time/effort investment in tuning generator

● Unknown value distribution ⇢? Counterexamples never generated

● New handwritten generator for each new precondition predicate?

○ Yes, sounds like fun! ⇢ Aight, see you in a month or two…

○ No, just filter values ⇢ And what if precondition is rare among values?...

All Lists of Naturals Using Exactly 17
Constructors

All SORTED Lists of Naturals Using Exactly 17
Constructors

“You've got to ask yourself one question. Do I feel
lucky? Well, do ya, [Randy]?” ~ Dirty Harry (1971)

Oh okay, that
sounds kinda
rough to deal with
now that you say.

Glad you agree, let
me show you an

alternative.

Solution Implementation
Don’t handwrite, instead derive
generators from data definition.

Use common structures in ADTs to
define Spaces of generated values.

Give all derived generators uniform
distributions.

Convert Sized Spaces to Finite Sets and
recursively index with naturals.

Don’t filter on predicate, find general
subsets that all fail predicate and
prune them.

Use Haskell’s Laziness to specialize
indexed value step by step until
predicate always true or always false.

Extract ADT Essence

The Space of the Nat ADT

The Space of the ListNat ADT

The Space of the Tree ADT

Let’s try to figure it out together.

The Space of the Tree ADT

Recursive Structure of FinSet

Measuring FinSet Cardinality

Example FinSet
{ Suc x | x ∈ {0, 1, 2} } ⨯ {A, B}

Show That Cardinality Is 6

Indexing Uniformly into FinSets

From Sized Spaces to FinSets

Uniformly Indexing Into ADT Spaces

Let’s try evaluating: indexSized spaceNat 2 0

Let’s try this out
for more
interesting
examples.
It’s demo time!

Sweet! But what
about those
PREDICATES!?!

We’ll get to them,
but first, my

friend, we have to
learn how to get

laaaaaazy.

Laziness/Call By Need Evaluation

Definition: Terms are only evaluated when needed, and
only needed portions of terms are evaluated, leaving
remainder of term unevaluated.

Examples:

Idea: If we define predicates lazily, we
can find entire sets of predicate fulfilling
or failing values instead of singular
values

Lazy Predicate-Guided Indexing

Generate
random index
for pruned
space.

Specialize Space lazily
composing one
constructor at a time
until predicate is valid.

Test using
value from
Space that
satisfies
predicate.

Prune entire
specialized
space from
set of indices.

If Just
False

If Just True

Generate
random index
for pruned
space.

Specialize Space lazily
composing one
constructor at a time
until predicate is valid.

Test using
value from
Space that
satisfies
predicate.

Prune entire
specialized
space from
set of indices.

If Just
False

If Just True

Backtrack

Let’s try to see
how effective lazy
pruning is.
It’s demo time!

I get it now Mr.
Bot, thanks a
bunch!

Awesome, now
does anyone have
questions?

Thank you for listening, any questions?

