
 1

University of Maryland College Park
Department of Computer Science

CMSC132 Fall 2021
Exam #3

FIRSTNAME, LASTNAME (PRINT IN UPPERCASE):

STUDENT ID (e.g. 123456789):

Instructions

• Please print your answers and use a pencil.
• This exam is a closed-book, closed-notes exam with a duration of 50 minutes and 100 total points.
• Do not remove the exam’s staple. Removing it will interfere with the scanning process (even if you staple the exam again).
• Write your directory id (e.g., terps1, not UID) at the bottom of pages with DirectoryId.
• Provide answers in the rectangular areas.
• Do not remove any exam pages. Even if you don’t use the extra pages for scratch work, return them with the rest of the exam.
• Your code must be efficient and as short as possible.
• If you continue a problem on the extra page(s) provided, make a note on the particular problem.
• You don’t need to use meaningful variable names; however, we expect good indentation.
• You must write your name and id at this point (we will not wait for you after time is up).
• You must stop writing once time is up.

Grader Use Only

Problem #1 (Sets from JCF) 14

Problem #2 (Applications of Stack) 20

Problem #3 (Miscellaneous) 6

Problem #4 (Hash Tables and Linked Lists) 60

Total 100

 2

Problem #1 (Sets from JCF) – 14 pts

Assume the necessary import statements and consider the code below:

public class SetQuestion {

 public static Object[] notUnique (Integer [] arr) {

 HashSet <Integer> h = new HashSet <Integer>();
 TreeSet <Integer> t = new TreeSet<Integer>();

 return (notUniqueAux (arr, h, t, 0).toArray());

 }

 private static Set<Integer> notUniqueAux (Integer [] arr, HashSet <Integer> h,
 TreeSet <Integer> t, int index) {

 // YOU WRITE THIS METHOD

 }

 public static void main(String[] args) {

 System.out.println(Arrays.toString(notUnique(new Integer[]

 {7,5,4,3,7,4,32,12,54,54,12,12})));
 System.out.println(Arrays.toString(notUnique(new Integer[] {7,5,4})));

 }

}

Output of main

[4, 7, 12, 54]
[]

Write the code for notUniqueAux. Its job is to return an ordered set having only values appearing more
than once from arr. You cannot add any fields, create any local variables (using the four parameters are ok),
or have any loops. How you use the 4 parameters is up to you. Your code must be tail recursive. As for
methods of the sets from JCF, you can only use the add method. Remember that if the set already contains the
element, the call to add leaves the set unchanged and returns false.

Write the answer on the back

 3

private static Set<Integer> notUniqueAux (Integer [] arr, HashSet <Integer> h,
 TreeSet <Integer> t, int index) {

Directory ID:

 4

Problem #2 (Applications of Stack) - 20 pts

Assume the necessary import statements and consider the code below:

public class StackQuestion {

 public static boolean matchingPar(String arg) {
 Stack <Character> s = new Stack<Character>();

// YOU WRITE THIS METHOD
 }

 public static void main(String[] args) {

 System.out.println(matchingPar("ab")); //true
 System.out.println(matchingPar("((ab))")); //true
 System.out.println(matchingPar("(a((ab))")); //false
 System.out.println(matchingPar("(v((vv)))")); //true
 System.out.println(matchingPar(")z((xc))(")); //false
 System.out.println(matchingPar("()e((*&))()")); //true

 }

}

Write the code for matchingPar. Its job is to return true only if all the open and closing parenthesis are
correctly paired. All other characters in the string can be ignored. Use the local Stack variable, s, to help you
with the logic as you loop through the string and look at one character at a time using the string method:
charAt.

As for Stack methods you only need to use:

push(Character item) - Pushes an item onto the top of this stack.

pop() - Removes the object at the top of this stack and returns that object as the value of this function.
Throws: EmptyStackException - if this stack is empty.

empty() – Returns true if and only if this stack contains no items; false otherwise.

Write the answer on the back

 5

public static boolean matchingPar(String arg) {
 Stack <Character> s = new Stack<Character>();

Directory ID:

 6

Problem #3 (Miscellaneous) – 6 pts

1. What is the Big-O complexity of matchingPar method, as described in problem 2, in terms of n being the number of
characters in the parameter. You can assume that the stack methods are all O(1) operations. Explain your answer. No more
than 2 sentences.

2. Does the StackQuestion class from problem 2 satisfy the java hash code contract as it is or does something additional have
to be added ? Explain your answer. No more than 3 sentences.

Problem #4 (HashTables and Linked Lists) – 60 pts

Assume the necessary import statements and consider the code below:

public class Exam3HashSet {
 private StringList hashTable[];
 private int capacity; //number of array elements in the table
 private int size; //number of data in the hash table

 public Exam3HashSet(int capacity) {

 this.hashTable = new StringList[capacity];
 for (int i =0; i< hashTable.length; i++)
 hashTable[i] = new StringList ();
 this.capacity = capacity;
 this.size = 0;
 }

 public double loadFactor()
 {
 // YOU WRITE THIS METHOD
 }

 public void insert (String s)
 {
 // YOU WRITE THIS METHOD

 }

 public boolean contains (String s)
 {
 // YOU WRITE THIS METHOD

 }

 7

 public void remove (String s)
 {
 // YOU WRITE THIS METHOD

 }

 public int hashFunction(String s)
 {
 return Math.abs((s.hashCode() * 104059) % capacity);
 }

 public void displayHashTable()
 {
 for (StringList s: hashTable)
 {
 System.out.println(s+"\n");
 }

 }
 //private inner StringList class to be used as buckets
 private class StringList {

 private class Node {
 private String data;
 private Node next;

 private Node(String data) {
 this.data = data;
 next = null;
 }
 }

 private Node head;

 private StringList() {
 head = null;
 }

 private void add(String input) {
 // YOU WRITE THIS METHOD
 }
 private boolean search(String input) {
 // YOU WRITE THIS METHOD
 }

 private void delete(String input) {
 // YOU WRITE THIS METHOD
 }
 public String toString() {
 String result = "\" ";
 Node curr = head;

 while (curr != null) {
 result += curr.data + " ";
 curr = curr.next;
 }

 return result + "\"";
 }
 }
}

Directory ID:

 8

Sample Driver

public class SampleDriver {

 public static void main(String[] args) {
 Exam3HashSet mySet = new Exam3HashSet (5);

 mySet.insert("trees");
 mySet.insert("heaps");
 mySet.insert("lists");
 mySet.insert("stacks");

 mySet.insert("red");
 mySet.insert("blue");
 mySet.insert("green");
 mySet.insert("yellow");

 mySet.insert("lists"); //duplicates will not get added to set
 mySet.insert("stacks");
 mySet.insert("red");
 mySet.insert("blue");

 System.out.println("After insert: ");

 System.out.println("Load Factor is : "+ mySet.loadFactor());

 mySet.displayHashTable();

 System.out.println("--------------------");

 System.out.println("red in table? " + mySet.contains("red"));
 System.out.println("map in table? " + mySet.contains("map"));

 System.out.println("--------------------");

 mySet.remove("trees");
 mySet.remove("heaps");
 mySet.remove("lists");
 mySet.remove("stacks");

 mySet.remove("trees"); //already deleted, no change
 mySet.remove("heaps");
 mySet.remove("lists");
 mySet.remove("stacks");

 System.out.println("After remove: ");

 System.out.println("Load Factor is : " + mySet.loadFactor());

 mySet.displayHashTable();

 }

}

 9

Sample Driver Output

After insert:
Load Factor is : 1.6
" "

" lists stacks "

" green "

" trees red blue yellow "

" heaps "

red in table? true
map in table? false

After remove:
Load Factor is : 0.8
" "

" "

" green "

" red blue yellow "

" "

1. With one statement, complete the method below. You should know how to calculate the load factor
from lecture.

2. With one statement, complete the method below. The hash table is using separate chaining and the add
method of the inner StringList class has the logic for adding s to the linked list if it is not already
there.

3. With one statement, complete the method below. The hash table is using separate chaining and the
search method of the inner StringList class has the logic for finding s in the linked list if it is
there.

public double loadFactor() {

}

public void insert (String s){

}

public boolean contains (String s) {

}

Directory ID:

 10

4. With one statement, complete the method below. The hash table is using separate chaining and the
delete method of the inner StringList class has the logic for removing s from the linked list if it
there.

5. Implement the search method of the inner StringList class. It should return true if input is in

the linked list and false otherwise.

Problem #2 (Class Implementation)

public void remove (String s) {

}

private boolean search(String input) {

 11

6. Implement the add method of the inner StringList class. It should add input to the end of the
linked list if it is not already there. Do not forget to update size.

Problem #2 (Class Implementation)

EXTRA PAGE IN CASE YOU NEED IT (SUBMIT WITH THE EXAM)

private void add(String input) {

Directory ID:

 12

7. Implement the delete method of the inner StringList class. It should delete input from the
linked list if it is there. Do not forget to update size.

Problem

LAST PAGE

private void delete(String input) {

