Modus Ponens	Modus Tollens	Conjunction	on Transitivity
p ightarrow q	p o q	p	p o q
\underline{p}	$\sim q$	\underline{q}	q ightarrow r
$\therefore q$	∴~ <i>p</i>	$\therefore p \wedge q$	$\therefore p ightarrow r$
Elimination		Generalization	
$p \vee q$	p ee q	p	\underline{q}
$rac{\sim q}{\mathrel{\dot{\cdot}} \cdot p}$	$\sim p$	$\therefore p \lor q$	$\therefore p \lor q$
$\therefore p$	$\therefore q$		
Specialization Contradi		ction rule	Proof by division into cases
			p ee q
$\underline{p \wedge q}$ $\underline{p \wedge q}$	\sim p -	$\rightarrow c$	p ightarrow r
$\overline{\therefore} p$ $\overline{\qquad} \overline{\qquad} p$			q ightarrow r
			T