## Subset relations

| Given any sets $A, B$, and $C$ : |  |
| :--- | :--- |
| 1. Inclusion for intersection: | $(A \cap B) \subseteq A$ <br> $(A \cap B) \subseteq B$ |
| 2. Inclusion for union: | $A \subseteq(A \cup B)$ <br> $B \subseteq(A \cup B)$ |
| 3. Transitive property of subsets: | $(A \subseteq B) \wedge(B \subseteq C) \rightarrow A \subseteq C$ |

## Set identities

| Given any sets $A, B$, and $C$, the universal set $U$ and the empty set $\emptyset:$ |  |
| :--- | :--- |
| 1. Commutative laws: | $A \cap B=B \cap A$ <br> $A \cup B=B \cup A$ |
| 2. Associative laws: | $(A \cap B) \cap C=A \cap(B \cap C)$ <br> $(A \cup B) \cup C=A \cup(B \cup C)$ |
| 3. Distributive laws: | $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$ <br> $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$ |
| 4. Intersection with $U$ (identity): | $A \cap U=A$ |
| 5. Double complement law: | $\left(A^{\prime}\right)^{\prime}=A$ |
| 6. Idempotent laws: | $A \cap A=A$ <br> $A \cup A=A$ |
| 7. De Morgan's laws: | $(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$ <br> $(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$ |
| 8. Union with $U$ (universal bounds): | $A \cup U=U$ |
| 9. Absorption laws: | $A \cup(A \cap B)=A$ <br> $A \cap(A \cup B)=A$ |
| 10. Alternative representation for set difference: | $A-B=A \cap B^{\prime}$ |

## Properties of $\emptyset$ and the universal set

| Given any sets $A, B$, and $C$, the universal set $U$ and the empty set $\emptyset$ : |  |
| :--- | :--- |
| 1. Definition of empty set: | $(\forall$ sets $A)[A=\emptyset \leftrightarrow(\forall x \in U)[x \notin A]]$ |
| 2. The empty set is a subset of every set: | $(\forall$ sets $A)[\emptyset \subseteq A]$ |
| 3. Union with $\emptyset:$ | $A \cup \emptyset=A$ |
| 4. Intersection and union with complement: | $A \cap A^{\prime}=\emptyset$ <br> $A \cup A^{\prime}=U$ |
| 5. Intersection with $\emptyset:$ | $A \cap \emptyset=\emptyset$ |
| 6. Complement of union and $\emptyset:$ | $U^{\prime}=\emptyset$ <br> $\emptyset^{\prime}=U$ |
| 7. Every set is a subset of the universal set: | $(\forall \operatorname{sets} A)[A \subseteq U]$ |

