
Chapter 1

Higher Order Functions

The headquarters of the Order of the
Phoenix may be found at number
twelve, Grimmauld Place, London.

Harry Potter

1.1 Intro

We cover this topic in OCaml so the examples here will be mostly written in OCaml.

1.2 Functions as we know them

Let us first define a function. A function is something that takes in input, or a argument and
then returns a value. As programmers, we typically think of functions as a thing that takes
in multiple input and then returns a value. Technically this is syntactic sugar for the most
part but that’s a different chapter. The important part is that we have this process that has
some sort of starting values, and then ends up with some other final value.

in the past, functions may have looks liked any of the following

\\ java
i n t area (i n t length , i n t width) {

return length * width ;
}
/* C */
i n t max(i n t * arr , i n t arr_ length) {

i n t max = arr [0]
for (i n t i = 1 ; i < arr_ length ; i ++)

i f arr [I] > max
max = arr [i] ;

return max ;

1

2 CHAPTER 1. HIGHER ORDER FUNCTIONS

}

Ruby
def char −sum(s t r)

sum = 0
s t r . . each_char { | i | sum += i . ord }
sum

end

(* OCaml *)
l e t circumference radius = 3 . 1 4 * . 2 . * . radius

In these functions, our inputs were things like data structures, or ’primitives’. Ultimately,
our inputs were some sort of data type supported by the language. Our return value is the
same, could be a data structure, could be a ’primitive’, but ultimately some data type that
is supported by the language.

This should hopefully all be straightforward, a review and pretty familiar. The final note
of this section is there are 3 (I would say 4) parts of a function. We have the function name,
the arguments, and the body (and then I would include the return type or value as well).
Again this shouldn’t be new, just wanted this here so we are all on the same page.

1.3 Higher Programming

As we said, functions take in arguments that can be any data type supported by the lan-
guage. A higher order programming language is one where functions themselves are con-
sidered a data type. We saw this in OCaml, but let’s take a deeper look at it now.

Let us consider the following C program:

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <time.h>
4
5 int add1(int x){
6 return x + 1;
7 }
8 int sub1(int x){
9 return x - 1;

10 }
11
12 // return a function pointer
13 int* getfunc(){
14 int (*funcs[2])(int) = {sub1, add1};
15 return funcs[rand()%2];
16 }
17
18 // take in a function pointer

1.4. ANONYMOUS FUNCTIONS 3

19 void apply(int f(int), int arg1){
20 int ret = (*f)(arg1);
21 printf("%d\n",ret);
22 }
23
24 int main(){
25 int i;
26 srand(time(NULL));
27 for(i = 0; i < 5; i++){
28 apply(getfunc(),3); //playing with pointers
29 }
30 }

This program has one function that returns a function pointer, and one function that takes
in a function pointer. The idea of this is the basis of allowing functions to be treated as
data. For most languages we have the ability to bind variables to data.

i n t x = 3 ; // C , Java
y = 4 # Ruby
l e t z = 4 . 2 ; ; (* OCaml *)
// idea
// var iab le = data

If we consider what is going on in the machine (Maybe recall from 216), then we know that
any piece of data is just 1s and 0s stored at some memory address. The variable name helps
us know which memory address we are storing things (so we don’t have to remember what
we stored at address 0x012f or something). When we want to then refer to that data, we use
the memory address (variable name) and we retrieve that data. Why should a function be
any different? We previously saw a pointer to a function being passed around, which just
means the pointer to a list of procedures that are associated with the function. So in the
case of higher order programming, we are just allowing functions to be passed in function
data as arguments or be returned.

Thus we can say that a higher order function is one which takes in or returns another
function. We can also avoid all these void pointers and casting and stuff in most functional
languages like OCaml:

1 (* takes in a function)
2 let apply f x = f x;;
3 (* returns a function *)
4 let get_func = let add1 x = x + 1 in add1;;

1.4 Anonymous Functions

So we just said that we bind data to variables if we want to use them again. Sometimes
though, we don’t want to use them again, or we have no need to store a function for re-
peated use. So we have this idea of anonymous functions. It is anonymous because it has

4 CHAPTER 1. HIGHER ORDER FUNCTIONS

no (variable) name, which also means we cannot refer to it later. The syntax of an anony-
mous function is

(* add1 *)
fun x −> x + 1
(* add *)
fun x y −> x + y
(* general syntax *)
(* fun var1 : t 1 var2 : t2 . . . varx : tx −> e : ty *)
(* has type (t 1 −> t2 −> . . . −> tx −> ty) *)

This is no different that just saying something like 2 + 3 instead of saying something like
(* let x = 2 + 3 *). This means that we can do the same thing by doing something like

1 2 + 3 (* expression by itself, no variable *)
2 let x = 2 + 3 (* expression then bound to a variable *)
3 fun x -> x + 1 (* function by itself, no variable *)
4 let add1 = fun x -> x + 1 (* function bound to variable *)

Which means let add1 x = fun x -> x + 1 is just syntactic sugar of let add1 fun
x -> x + 1. This is because OCaml and other functional programming languages are
based on this thing called lambda calculus, which is another chapter. But if we think about
our mathematical definition of a function: it is something that takes in 1 input, and returns 1
output. So if each function should have 1 input, then what about something like let plus
x y = x + y?

1.5 Partial Applications

Recall a section or something ago when we said that higher order functions can take in
functions as arguments, and return functions as return values. Consider:

1 let plus x y = x + y
2 (* int -> int -> int *)

We said earlier that functions have types where the last thing in the type is the return value,
and the first few items are the input types. We kinda lied. Let us consider:

l e t plus x y = x + y
(* i n t −> i n t −> i n t *)
l e t plus x = fun y −> x + y
(* i n t −> i n t −> i n t *)
(* i n t −> (i n t −> i n t) *)

This last function does have type int -> int -> int but consider what the syntax says.
plus is a function that takes in an int but then returns a function that itself takes in an
int and returns an int. Which means we can actually define plus as

1 let plus = fun x -> fun y -> x + y;;

If we can define functions like this then we can do things like

1.6. CLOSURES 5

1 let plus = fun x -> fun y -> x + y
2 let add3 = plus 3 (* returning fun y -> 3 + y *)
3 add3 5 (* returns 8 *)

This is called a partial application of a function, or the process of currying. Not all functional
languages support this unless the function is specifically defined as one which returns a
function.

It is important to note here that you can only partially apply variables in the order
used in the function declaration. That is a function like let add = fun x -> fun y
-> x + y can only partially apply the x variable: let add4 = add 4. This is because
we are technically doing something like let add4 = fun y -> 4 + y. If we wanted to
partially apply the second parameter we would need to do something let flip f x y
= f y x in flip sub.

To be more clear:

1 let sub x y = x - y
2 (* same as let sub = fun x -> fun y -> x - y *)
3 let minus3 = sub 3
4 (* let minus3 = fun y -> 3 - y *)
5 (* we cannot partially apply the second argument to sub unless we

have a new function *)
6 (* we could make a sub specific function *)
7 let minus y = sub y 3
8 (* but let’s make something generic *)
9 let flip x y = f y x

10 (* let flip = fun f -> fun x -> fun y -> f y x *)
11 let sub3 = flip sub 3
12 (* let sub3 = fun y -> sub y 3 *)

So how does and currying supported language know what the values of variables are?
Or how are partially applicated functions implemented? The answer lies with this idea of a
closure, something thing that a Ruby Proc is.

1.6 Closures

If you look up the Proc object in the Ruby Docs, you will see that they call a Proc a closure.
A closure is a way to create/bind something called a context or environment. Consider the
following:

l e t and4 w x y z = w && x && y && z
(* and4 = fun w −> fun x −> fun y −> fun z −> w && x && y && z *)
l e t and3 = add4 true
(* and3 = fun x −> fun y −> fun z −> true && x && y && z *)
l e t and2 = and3 true
(* and2 = fun y −> fun z −> true && true && y && z *)

How does the language or machine know that you want to bind say variable w to true? To
be honest, there is no magic, we just store the function, and then a list of key-value pairs

6 CHAPTER 1. HIGHER ORDER FUNCTIONS

of variables to values. This list of key-value pairs is called an environment. A closure is
typically just a tuple of the function and the environment. Visually, a closure might look
like the following:

l e t sub x y = x − y
l e t sub3 = sub 3
(* sub3 may look l i k e
(funct ion : fun y −> x − y , environment : [x : 3])
*)

Very much like a Proc (because a Proc is a closure), a closure is not evaluated, or run until
it is called. Thus, once made, the closure will not be modified. Thus the following would
have no affect:

1 let sub x y = x - y
2 let x = 3
3 let sub3 = sub x
4 let x = 5
5 sub3 5 (* evaluates to -2 since 3 - 5 = -1 *)

Because the environment is not modified, and is evaluated with values that existed at the
time of the closure’s creation, we say that closures use static scope. This term is used in
contrast with dynamic scope, where environment variables get updated to match typically
top level variables. That is the above example would return 0 instead of -2.

1.7 Common HOFs

Part of the reason why higher order functions (HOFs) are so useful is because it allows us
to be modular with out program design, and separate functions from other processes. To
see this, consider the following that we say earlier:

1 let sub x y = x - y
2 let div x y = x / y
3 let mystery x y = (x*2)+(y*3)
4 let sub3 y = sub y 3
5 let div3 y = div y 3
6 let double y = mystery y 0

The functions sub, div, and mystery are all non-commutative (the order of inputs mat-
ter), so if we want to partially apply the second value, we need to write a new function that
takes in a value to do so. Alternatively, we can just make a generic function that partially
applies the second value so we don’t need to ask for any input.

l e t f l i p f x y = f y x
l e t sub3 = f l i p sub 3
l e t div3 = f l i p div 3
l e t double = f l i p mystery 0

Being able to make similarly structured functions into a generic helps makes things modu-
lar, which is important to building good programs and designing good software. So the next

1.7. COMMON HOFS 7

sections are about common HOFs which will attempt to make a common function structure
generic.

1.7.1 Map

Let us consider the following functions:

1 let rec double_items lst = match lst with
2 [] -> []
3 |h::t -> (h*2)::(double_items t)
4
5 let rec is_even lst = match lst with
6 []->[]
7 |h::t -> (if h mod 2 = 0 then true else false)::(is_even t)
8
9 let rec neg lst = match lst with

10 [] -> []
11 |h::t -> (-h)::(neg t)

All of these functions aim to iterate through a list and modify each item. This is very com-
mon need and so instead of creating the above functions to do so, we may want to use this
function called Map. Map willmap the items from the input list (the domain) to a list of new
item (co-domain). To take the above function and make it more generic, let us see that is
the same across all of them:

1 let rec name lst = match lst with
2 [] -> []
3 |h::t -> (modify h)::(recursive_call t)

If we think about how we modify h, we will realize that we are just applying a function to h.
Since it’s the function that changes, we probably need to add it as a parameter. So adding
this we should get

1 let rec map f lst = match lst with
2 [] -> []
3 |h::t -> (f h)::(map t)

Fun fact: map actually exists in Ruby ([1,2,3].map!{|x| x+1}). Either way, in OCaml
and other languages without imperative looping structures, this is a common recursive
function that is needed and can be used to modify each item of a list by building a new list
of the modified values (recall that everything in OCaml is immutable). Consider the code
trace for adding 1 to each item in a int list.

1 let add1 x = x + 1 in map add1 [1;2;3]
2 (*
3 map add1 [1;2;3] = (add1 1)::(map add1 [2;3])
4 map add1 []2;3] = (add1 2)::(map add1 [3])
5 map add1 [3] = (add1 3)::(map add1 [])
6 map add1 [] = []

8 CHAPTER 1. HIGHER ORDER FUNCTIONS

7 map add1 [1;2;3] = (add1 1)::(add1 2)::(add1 3)::[]
8 map add1 [1;2;3] = 2::3::4::[]
9 map add1 [1;2;3] = [2;3;4]

10 *)

1.7.2 Fold

While modifying each item in a list is useful, it is not the only common and useful list
operation. Consider the following:

1 let rec concat lst = match lst with
2 []-> ""
3 |h::t -> h^(concat t)
4
5 let rec sum lst = match lst with
6 []-> 0
7 |h::t -> h+(sum t)
8
9 let rec product lst = match lst with

10 []-> 1
11 |h::t -> h*(product t)
12
13 let rec ands lst = match lst with
14 []-> true
15 |h::t -> h && (ands t)
16
17 let rec length lst = match lst with
18 []-> 0
19 |_::t -> 1+(length t)

Here we want to take all the items in a list and return a single aggregate value. Doing this
process is called folding and there are two common implementations. To start off, we will
define define fold_right.

fold_right

So let us find out what each function has in common and then we can figure out what we
need to add.

1 let rec name lst = match lst with
2 [] -> base_case
3 |h::t -> h operation (recursive_call t)

Taking a look at what we need, we need a base case, and we need an operation.

1 let rec fold_r f lst base = match lst with
2 [] -> base
3 |h::t -> f h (fold_r f t b)

1.7. COMMON HOFS 9

Let us first talk about why it’s f h (fold_r f t b). In looking what was the same, we
saw that it was h operator (rec_call t). An operator is just a function so we are
calling a function with 2 parameters: h and the recursive call fold_r f t b.

Some of you may also be wondering what about lenth? It doesn’t use h, it uses a
constant 1. My answer to this is to consider the type of the f. f is a function which takes in
2 parameters, h and the recursive call. I can easily just not use h in the body of f. Consider
the following code trace:

1 let myfunc h rc = 1 + rc in
2 fold_r myfunc [1;2;3] 0
3 (*
4 fold_r myfunc [1;2;3] 0 = myfunc 1 (fold_r myfunc [2;3] 0)
5 fold_r myfunc [2;3] 0 = myfunc 2 (fold_r myfunc [3] 0)
6 fold_r myfunc [3] 0 = myfunc 3 (fold_r myfunc [] 0)
7 fold_r myfunc [] 0 = 0
8 fold_r myfunc [3] 0 = myfunc 3 0 = 1 + 0 = 1
9 fold_r myfunc [2;3] 0 = myfunc 2 1 = 1 + 1 = 2

10 fold_r myfunc [1;2;3] 0 = myfunc 1 3 = 1 + 2 = 3
11 *)

Notice here that lines 8-10 are just the stack frames all returning and propagating the re-
turn value up as stack frames are being popped off the stack. This also happens in map but
there’s something interesting with fold so I wanted to bring attention to it. That is, no-
tice that if we send in a huge list we can potentially get a stackoverflow error or whatever
OCaml’s equivalent is. We can actually avoid this stack overflow and minimize the number
of stack frames needed through the use of the other way to implement fold: fold_left.
This is the default implementation of fold in most languages afaik so we typically just call
this fold.

fold_left

See the next section (section 1.8) about why this we can minimize the number of stack
frame, but since you already know how fold works, here is fold_left

1 let rec fold f a l = match l with
2 [] -> a
3 |h::t -> fold f (f a h) t

I used the variable a instead of base case or whatever because in this variation, the value
is going to act as an accumulator. That is, this value is going to be constantly updated with
each recursive call. Again see the next section for more about the accumulator. One thing
to note is that this will evaluate the items in the list in the reverse order as fold_right.
Consider the code trace for fold_left, then see them compared together.

(* take the sum of the l i s t *)
l e t add x y = x + y in
fo ld add 0 [1 ; 2 ; 3 ;]
(*
fo ld add 0 [1 ; 2 ; 3] = fo ld add (add 0 1) [2 ; 3] = fo ld add 1 [2 ; 3]

10 CHAPTER 1. HIGHER ORDER FUNCTIONS

fo ld add 1 [2 ; 3] = fo ld add (add 1 2) [3] = fo ld add 3 [3]
fo ld add 3 [3] = fo ld add (add 3 3) [] = fo ld add 6 []
fo ld add 6 [] = 6
*)

Now to compare the order of fold_right and fold_leftwe will use a non-commutative
function: subtraction.

fo ld (−) 0 [1 ; 2 ; 3 ;]
(*
fo ld (−) 0 [1 ; 2 ; 3] = fo ld (−) ((−) 0 1) [2 ; 3] = fo ld (−) −1 [2 ; 3]
fo ld (−) −1 [2 ; 3] = fo ld (−) ((−) −1 2) [3] = fo ld (−) −3 [3]
fo ld (−) −3 [3] = fo ld add ((−) −3 3) [] = fo ld add −6 []
fo ld (−) −6 [] = −6
*)
(* compare th i s to fo ld_ r igh t *)
fo ld_r (−) [1 ; 2 ; 3] 0
(*
fo ld_ r (−) [1 ; 2 ; 3] 0 = (−) 1 (fo ld_ r (−) [2 ; 3] 0)
fo ld_ r (−) [2 ; 3] 0 = (−) 2 (fo ld_ r (−) [3] 0)
fo ld_ r (−) [3] 0 = (−) 3 (fo ld_ r (−) [] 0)
fo ld_ r (−) [] 0 = 0
fo ld_r (−) [3] 0 = (−) 3 0 = 3
fo ld_r (−) [2 ; 3] 0 = (−) 2 3 = −1
fo ld_r (−) [1 ; 2 ; 3] 0 = (−) 1 −1 = 2
*)
(* −6 ! = 2 *)

How interesting.

1.8 Tail Call Optimization

I was going to make this it’s own chapter, but then had logistical questions so for now I
decided against it and so I will just put this in the HOF chpater for some reason.

Let us take a trip back to our 216 days when we learned about stack frames and function
calls. One thing I have noticed is that students get weird around recursion but I want you
to consider the following

1 int fact1(int x){
2 if (x == 1)
3 return 1;
4 return -1
5 }
6 int fact2(int x){
7 if (x == 2)
8 return 2 * fact1(x-1);
9 return -1

1.8. TAIL CALL OPTIMIZATION 11

10 }
11 int fact3(int x){
12 if (x == 3)
13 return 3 * fact2(x-1);
14 return -1
15 }
16 int fact4(int x){
17 if (x == 4)
18 return 4 * fact3(x-1);
19 return -1
20 }

Suppose we are on line 18. To evaluate what is returned, we have to call fact3, wait for it’s
return value, and then use that return value by multiplying it by 4. This is no different than
it’s recursive equivalent

1 int fact4(int x){}
2 if (x == 1)
3 return 1;
4 if (x <= 4)
5 return x * fact4(x-1);
6 return -1;
7 }

The only difference is instead of calling a different function, waiting for it’s return value,
then using it’s return value, we are instead calling ourself, waiting for a return value, then
using that return value.

Great, so now that we know how recursion works, recall how a stack frame is created and
pushed onto the memory stack when a function is called and then popped off the memory
stack then the function returns. So the difference between something like the non-recursive
fact4 and the recursive fact4, is which function is being pushed to the stack.

So Consider what the stack looks like for the recursive fact4 if we call fact4(3)

1 //Bottom of Stack//
2 3 // push argument on stack
3 ---start of fact4(3) stack frame---
4 return 3 * fact4(2)
5 ---end of fact4(3) stack frame---
6 2 // push argument on stack
7 ---start of fact4(2) stack frame---
8 return 2 * fact4(1)
9 ---end of fact4(2) stack frame---

10 2 // push argument on stack
11 ---start of fact4(1) stack frame---
12 return 1
13 ---end of fact4(1) stack frame---

12 CHAPTER 1. HIGHER ORDER FUNCTIONS

Here we are pushing on stack frames when we call the recursive call. Then when finally get
to out base case, we can then start popping values off. So popping off the textttfact4(1) call
would make the stack look like

1 //Bottom of Stack//
2 3 // push argument on stack
3 ---start of fact4(3) stack frame---
4 return 3 * fact4(2)
5 ---end of fact4(3) stack frame---
6 2 // push argument on stack
7 ---start of fact4(2) stack frame---
8 return 2 * 1
9 ---end of fact4(2) stack frame---

When you learned recursion, you probably learned about return values being propa-
gated when teh function returns and this is how you can communicate values from one
stack frame to another. This is definitely what happens, but notice that with something like
recursive Fibonacci, you will get stack frames being added exponentially and you will get
something like a stackoverflow error.

1 int fib(int x){
2 if(x <= 1)
3 return 1;
4 return fib(x-1) + fib(x-2);
5 }

Here the number of stack frames increase at a rate of 2x since each call to fib will push 2
more fib stack frames.

I think we can all agree that Stackoverflow errors are not good and if we can avoid
them, we should. One way to avoid this is to use tail call optimization which would be
something a compiler would use to optimize your code. To talk about tail call optimization,
let us first talk about what the actual issue is.

The issue is that there are too many stack frames on the stack and then we run out of
memory. There is 2 ways we can solve this issue: 1) add more memory or 2) pop things off
the stack. The first solution doesn’t really fix the issue, since memory is finite and we can
just ask for something like fib(10000000). The second solution has an issue because
we need the old stack frames to exist. However, let us consider why we need the old stack
frames.

In the previous example, we needed the old stack frame because before we could re-
turn, we needed the return value of a different stack frame.

1 //Bottom of Stack//
2 // calling fact4(3)
3 ---------------------------------
4 return 3 * fact4(2)
5 //cannot return here since we need to first calculate fact4(2)
6 ---------------------------------
7 return 2 * fact4(1)

1.8. TAIL CALL OPTIMIZATION 13

8 //cannot return here since we need to first calculate fact4(1)
9 ---------------------------------

10 return 1
11 ---------------------------------

We said earlier that one way to pass in data from one stack frame to another is via the
return value. However this is just communication from the callee to the caller. We can pass
information from the caller to the callee by via argument values. So let consider this new
factorial function:

1 int fact(int n, int a){
2 if(n<=1)
3 return a;
4 return fact(n-1, n*a);
5 }

Notice that I added a new argument, a. This new parameter will allow the caller to send in
data to the callee during the recursive call. Consider the following trace:

1 //Bottom of Stack//
2 // calling fact(3,1)
3 ---------------------------------
4 // fact(3,1)
5 return fact(3-1,3*1) // fact(2,3)
6 ---------------------------------
7 // fact(2,3)
8 return fact(2-1,2*3) // fact(1,6)
9 ---------------------------------

10 // fact(1,6)
11 return 6
12 ---------------------------------

Notice here that we get the same value, passing in the work of each stack frame into the
next recursive call. What this means is that we no longer need to wait for the recursive call
to finish, we can instead pop off stack frames once the recursive call happens.

1 //Bottom of Stack//
2 // calling fact(3,1)
3 ---------------------------------
4 // fact(3,1)
5 return fact(3-1,3*1) // fact(2,3)
6
7 // we don’t need the fact(3,1) stack frame so pop it off and push

on fact(2,3) in it’s place
8
9 //Bottom of Stack//

10 // calling fact(2,3)
11 ---------------------------------
12 // fact(2,3)

14 CHAPTER 1. HIGHER ORDER FUNCTIONS

13 return fact(2-1,2*3) // fact(1,6)
14
15 // we don’t need the fact(2,3) stack frame so pop it off and push

on fact(1,6) in it’s place
16
17 //Bottom of Stack//
18 // calling fact(1,6)
19 ---------------------------------
20 // fact(1,6)
21 return 6
22
23 // got the correct return value

So why is this called a tail call optimization and how to we make sure we are tail recur-
sive? To answer this question let us look at the syntax of these recursive calls.

1 int nontailfact(int x)
2 if (x == 1)
3 return 1;
4 return x * nontailfact(x-1);
5 }
6
7 int tailfact(int n, int a){
8 if(n<=1)
9 return a;

10 return tailfact(n-1, n*a);
11 }

Where the one major difference is the number of arguments, tail optimization does not
care about this. Remember that we care about the behavior of the recursive call. So if
we notice the syntax around the recursive call, we can say that we care about what the last
thing being calculated is during the recursive call. In the nontailfact the last thing being
calculated is x * nontailfact(x-1). In the tailfact, the last thing being calculated
is tailfact(n-1,n*a). This is purely a syntactical (visual) thing so we say that any state-
ment that could be the last thing executed is in tail position. If the recursive call is in
tail position, then we can take advantage of tail-call optimization.

Let us consider the tail position of some OCaml statements.

1 3
2 4
3 "a"
4 (* all of these statements are in tail position, since they are the

last thing being evaluated *)
5
6 2 + 3
7 4 * 5
8 (* here 2,3,4,5 are not in tail position. The last thing calculated

is 2*3, so we say the entire expression is in tail position.

1.8. TAIL CALL OPTIMIZATION 15

This is a tad confusing so let’s see something clearer *).
9

10 [2+3;5*4;0-1]
11 (* here the last thing being evaluated is the creation of the list.

So despite 2*3 being the last expression being evaluated, we
still need to create the list so the entire expression is again
in tail position *)

12
13 let x= 3 * 4 in x + 4
14 (* the last thing here is x+4 so the expression x + 4 is in tail

position *)
15
16 let x = 3 + 4 in let x = 6 in 7
17 (* consider the syntax we used for a let binding: let v = e1:t1 in

e2:t.
18 Here x = v, e1 = 3 + 4, and (let x = 6 in 7) is e2. Here at the top

level, (or in broadest context), the expression in tail
position is e2 or (let x = 6 in 7). If we changed our context
to be more "zoomed in" or "jump in instead of jump over" then
things in tail position would be just 7 *)

Again this is purely a syntactical thing which depends on the context of which parts of
the expression will we consider. In an earlier section, we talked about fold_right and
fold_left. They both do the same thing(ish), but one of them is tail recursive, and the
other is not.

	Higher Order Functions
	Intro
	Functions as we know them
	Higher Programming
	Anonymous Functions
	Partial Applications
	Closures
	Common HOFs
	Map
	Fold

	Tail Call Optimization

