
CMSC 330:
Organization of Programming Languages

Course Policies

1CMSC330 Fall 2022

Course Goals

• Describe and compare programming language features
∙ And understand how language designs have evolved

• Choose the right language for the job
• Write better code
∙ Code that is shorter, more efficient, with fewer bugs

• In short:
∙ Become a better programmer with a better
understanding of your tools (and being able to make
your own).

2

Course Activities
• Learn different types of languages
• Learn different language features and tradeoffs
∙ Programming patterns repeat between languages

• Study how languages are specified
∙ Syntax, Semantics — mathematical formalisms

• Study how languages are implemented
∙ Parsing via regular expressions (automata theory) and context

free grammars
∙ Mechanisms such as closures, tail recursion, lazy evaluation,

garbage collection, …
• Language impact on computer security

3

Resources

• Class Website (https://bakalian.cs.umd.edu/330)
○ course information (office hours and discussion info, syllabus, etc)

• Gradescope (https://gradescope.com)
○ Submitting assignments

• Piazza (https://piazza.com)
○ Forum for asking questions

• Github (https://github.com/umd-cmsc330/fall22)
○ Projects and Discussions

4

https://bakalian.cs.umd.edu/330
https://gradescope.com
https://piazza.com
https://github.com/umd-cmsc330/fall22

Syllabus

• Dynamic/ Scripting languages (Ruby)
• Regular Expressions
• Functional programming (OCaml)
• Regular expressions & finite automata
• Context-free grammars & parsing
• Lambda Calculus and Operational Semantics
• Safe, “zero-cost abstraction” programming (Rust)
• Garbage Collection

5

Calendar / Course Overview

• Tests
∙ 5 quizzes, 2 midterm exams, 1 final exam ALL ONLINE
∙ Do not schedule your interviews on exam dates

• Lecture quizzes
∙ On Gradescope, due by the end of the day of lecture

• Projects
∙ Project 0 - Setup
∙ Project 1 – Ruby
∙ Project 2-4 – OCaml
∙ Project 5 - Rust
� P1, P2, and P4 are split in two parts

∙ Can submit 24 hours late for 10% penalty
∙ Get five (5) 12-hour late tokens

6

Discussion Sections
• Discussions will be in-person

• Discussion sections will deepen understanding of
concepts introduced in lecture

• Oftentimes discussion section will consist of programming
exercises

• There will also be be quizzes, and some lecture material
in discussion section

7

Project Grading

• Projects will be graded using the Gradescope
∙ Software versions on these machines are canonical

• Develop programs on your own machine
∙ Your responsibility to ensure programs run correctly on

gradescope
• See web page for Ruby, OCaml, etc. versions we use, if

you want to install at home

8

Rules and Reminders

• Keep ahead of your work
∙ Get help as soon as you need it

� Office hours, Piazza (email as a last resort)

• Avoid distractions, to yourself and your classmates
∙ Keep cell phones quiet

• Cliff’s Advice
∙ Ask Questions
∙ Make Friends
∙ Start projects early
∙ Feel Emotions
∙ Expect to get things wrong

9

Academic Integrity

• All written work (including projects) done on your own
∙ Do not copy code from other students
∙ Do not copy code from the web
∙ Do not post your code on the web

• Cheaters are caught by auto-comparing code
• Work together on high-level project questions
∙ Discuss approach, pointers to resources: OK
∙ Do not look at/describe another student’s code
∙ If unsure, ask an instructor!

• Work together on practice exam questions
10

CMSC 330:
Organization of Programming Languages

Overview

11CMSC330 Spring 2022

Quiz time!

• According to IEEE Spectrum Magazine which is the “top”
programming language of 2021?

A. Java
B. R
C. Python
D. C++

12

Quiz time!

• According to IEEE Spectrum Magazine which is the “top”
programming language of 2021?

A. Java
B. R
C. Python
D. C++

13

Inserting my own course overview

14

What is a “Top” Language?

● What is a language?
○ Practical or Textbook Definition

● How do we use a language?
○ Claim: to express oneself
○ Does the language influence our expressiveness?

● What are the parts of a language?
○ Syntax, semantics, grammar
○ features and paradigms

15

What is a “Top” Language?

● Syntax, semantics, grammar
○ What does a language look like?
○ What does a idiom mean?
○ What structure does a language has?

● Features and Paradigms
○ Feature: Alphabet (English vs Mandarin)
○ Paradigm: Temporal (Fictional heptapod vs English)

16

What is a “Top” Language?

● Programming Languages are different
○ Features help express different things
○ Not all languages have all features

● Studying features helps you learn how to approach a
problem
○ You will learn about certain features as well as how to

implement them

17

Done my own course overview

The rest is stuff that was originally there. I feel like we can
cut the rest

18

Plethora of programming languages

• LISP: (defun double (x) (* x 2))

• Prolog: size([],0).
size([H|T],N) :- size(T,N1), N is N1+1.

• OCaml: List.iter (fun x -> print_string x)
 [“hello, ”; s; "!\n”]

• Smalltalk: (#(1 2 3 4 5) select:[:i | i even])

CMSC330 Spring 2022 19

All Languages are (sort of) Equivalent

• A language is Turing complete if it can compute any
function computable by a Turing Machine

∙ Lots of ink has been spilt about this mostly useless
fact.

• Essentially all general-purpose programming languages
are Turing complete
∙ I.e., any program can be written in any TC programming

language
• Therefore this course is useless?!
∙ Learn one programming language, always use it

20CMSC330 Spring 2022

Studying Programming Languages

• Will make you a better programmer
∙ Programming is a human activity

� Features of a language make it easier or harder to program for a specific
application

∙ Ideas or features from one language translate to, or are later
incorporated by, another
� Many “design patterns” in Java are functional programming techniques

∙ Using the right programming language or style for a problem may
make programming
� Easier, faster, less error-prone

21CMSC330 Spring 2022

Studying Programming Languages

• Become better at learning new languages
∙ A language not only allows you to express an idea, it also shapes

how you think when conceiving it

∙ You may need to learn a new (or old) language
� Paradigms and fads change quickly in CS

� Also, may need to support or extend legacy systems

22CMSC330 Spring 2022

Changing Language Goals

• 1950s-60s – Compile programs to execute efficiently
∙ Language features based on hardware concepts

� Integers, reals, goto statements

∙ Programmers cheap; machines expensive
� Computation was the primary constrained resource

� Programs had to be efficient because machines weren’t
∙ Note: this still happens today, just not as pervasively

23CMSC330 Spring 2022

Changing Language Goals

• Today
∙ Language features based on design concepts

� Encapsulation, records, inheritance, functionality, assertions

∙ Machines cheap; programmers expensive
� Scripting languages are slow(er), but run on fast machines
� They’ve become very popular because they ease the programming

process

∙ The constrained resource changes frequently
� Communication, effort, power, privacy, …
� Future systems and developers will have to be nimble

24CMSC330 Spring 2022

Language Attributes to Consider
• Syntax
∙ What a program looks like

• Semantics
∙ What a program means (mathematically), i.e., what it computes

• Paradigm and Pragmatics
∙ How programs tend to be expressed in the language

• Implementation
∙ How a program executes (on a real machine)

25CMSC330 Spring 2022

26

Syntax

• The keywords, formatting expectations, and structure of
the language
∙ Differences between languages usually superficial

� C / Java if (x == 1) { … } else { … }
� Ruby if x == 1 … else … end
� OCaml if (x = 1) then … else …

∙ Differences initially jarring; overcome with experience

• Concepts such as regular expressions, context-free
grammars, and parsing handle language syntax

CMSC330 Spring 2022

27

Semantics

• What does a program mean? What does it compute?
∙ Same syntax may have different semantics in different

languages!

• Can specify semantics informally (in prose) or formally
(in mathematics)

Physical Equality Structural Equality

Java a == b a.equals(b)
C a == b *a == *b
Ruby a.equal?(b) a == b
OCaml a == b a = b

CMSC330 Spring 2022

Formal (Mathematical) Semantics

• What do my programs mean?

• Both OCaml functions implement “the factorial function.”
How do I know this? Can I prove it?
∙ Key ingredient: a mathematical way of specifying what programs

do, i.e., their semantics
∙ Doing so depends on the semantics of the language

let rec fact n =
 if n = 0 then 1
 else n * (fact n-1)

let fact n =
 let rec aux i j =
 if i = 0 then j
 else aux (i-1) (j*i) in
 aux n 1

28CMSC330 Spring 2022

Why Formal Semantics?

• Textual language definitions are often incomplete and
ambiguous
∙ Leads to two different implementations running the same

program and getting a different result!
• A formal semantics is a mathematical definition of what

programs compute
∙ Benefits: concise, unambiguous, basis for proof

• We will consider operational semantics
∙ Consists of rules that define program execution
∙ Basis for implementation, and proofs of program correctness
∙ E.g., used by WebAssembly

29https://webassembly.github.io/spec/core/exec/conventions.html#formal-notationCMSC330 Spring 2022

https://webassembly.github.io/spec/core/exec/conventions.html#formal-notation

30

Paradigm

• There are many ways to compute something
∙ Some differences are superficial

� For loop vs. while loop

∙ Some are more fundamental
� Recursion vs. looping
� Mutation vs. functional update
� Manual vs. automatic memory management

• Language’s paradigm favors some computing methods
over others. This class:
- Imperative - Resource-controlled (zero-cost)
- Functional - Scripting/dynamic

CMSC330 Spring 2022

Imperative Languages

• Also called procedural or von Neumann
• Building blocks are procedures and statements
∙ Programs that write to memory are the norm

int x = 0;
while (x < y) x = x + 1;

∙ FORTRAN (1954)
∙ Pascal (1970)
∙ C (1971)

31CMSC330 Spring 2022

Functional (Applicative) Languages

• Favors immutability
∙ Variables are never re-defined
∙ New variables a function of old ones (exploits recursion)

• Functions are higher-order
∙ Passed as arguments, returned as results

∙ LISP (1958)
∙ ML (1973)
∙ Scheme (1975)
∙ Haskell (1987)
∙ OCaml (1987)

32CMSC330 Spring 2022

OCaml

• A (mostly-)functional language
∙ Has objects, but won’t discuss (much)
∙ Developed in 1987 at INRIA in France
∙ Dialect of ML (1973)

• Natural support for pattern matching
∙ Generalizes switch/if-then-else – very elegant

• Has full featured module system
∙ Much richer than interfaces in Java or headers in C

• Includes type inference
∙ Ensures compile-time type safety, no annotations

33CMSC330 Spring 2022

A Small OCaml Example

let greet s =
 List.iter (fun x -> print_string x)
 ["hello, "; s; "!\n"]

$ ocaml
 OCaml version 4.07.1

#use "intro.ml";;
val greet : string -> unit = <fun>
greet "world";;
Hello, world!
- : unit = ()

intro.ml:

34CMSC330 Spring 2022

Dynamic (Scripting) Languages

• Rapid prototyping languages for common tasks
∙ Traditionally: text processing and system interaction

• “Scripting” is a broad genre of languages
∙ “Base” may be imperative, functional, OO…

• Increasing use due to higher-layer abstractions
∙ Originally for text processing; now, much more

∙ sh (1971)
∙ perl (1987)
∙ Python (1991)
∙ Ruby (1993)

35

#!/usr/bin/ruby
while line = gets do

csvs = line.split /,/
if(csvs[0] == "330") then
...

CMSC330 Spring 2022

Ruby

• An imperative, object-oriented scripting language
∙ Full object-orientation (even primitives are objects!)
∙ And functional-style programming paradigms
∙ Dynamic typing (types hidden, checked at run-time)
∙ Similar in flavor to other scripting languages (Python)

• Created in 1993 by Yukihiro Matsumoto (Matz)
∙ “Ruby is designed to make programmers happy”

• Core of Ruby on Rails web programming framework
∙ a key to Ruby’s popularity

36CMSC330 Spring 2022

A Small Ruby Example
def greet(s)
 3.times { print “Hello, ” }
 print “#{s}!\n”
end

% irb # you’ll usually use “ruby” instead
irb(main):001:0> require "intro.rb"
=> true
irb(main):002:0> greet("world")
Hello, Hello, Hello, world!
=> nil

intro.rb:

37CMSC330 Spring 2022

Theme: Software Security

• Security is a big issue today
• Features of the language can help (or hurt)
∙ C/C++ lack of memory safety leaves them open for many

vulnerabilities: buffer overruns, use-after-free errors, data
races, etc.
∙ Type safety is a big help, but so are abstraction and isolation, to

help enforce security policies, and limit the damage of possible
attacks

• Secure development requires vigilance
∙ Do not trust inputs – unanticipated inputs can effect surprising

results! Therefore: verify and sanitize

38CMSC330 Spring 2022

Zero-cost Abstractions in Rust

• A key motivator for writing code in C and C++ is the low
(or zero) cost of the abstractions use
∙ Data is represented minimally; no metadata required
∙ Stack-allocated memory can be freed quickly
∙ Malloc/free maximizes control – no GC or mechanisms to support

it are needed
• But no-cost abstractions in C/C++ are insecure
• Rust language has safe, zero-cost abstractions
∙ Type system enforces use of ownership and lifetimes
∙ Used to build real applications – web browsers, etc.

CMSC330 Spring 2022 39

Concurrent / Parallel Languages

• Traditional languages had one thread of control
∙ Processor executes one instruction at a time

• Newer languages support many threads
∙ Thread execution conceptually independent
∙ Means to create and communicate among threads

• Concurrency may help/harm
∙ Readability, performance, expressiveness

• Won’t cover in this class
∙ Threads covered in 132 and 216; more in 412, 433

40CMSC330 Spring 2022

Other Language Paradigms

• We are not covering them all in CMSC330!
• Parallel/concurrent/distributed programming
∙ Cilk, Fortress, Erlang, MPI (extension), Hadoop (extension);

more on these in CMSC 433
• Logic programming
∙ Prolog, λ-prolog, CLP, Minikanren, Datalog

• Object-oriented programming
∙ Simula, Smalltalk, C++, Java, Scala

• Many other languages over the years, adopting various
styles

CMSC330 Spring 2022 41

Logic-Programming Languages

• Also called rule-based or constraint-based
• Program rules constrain possible results
∙ Evaluation = constraint satisfaction = search
∙ “A :- B” – If B holds, then A holds (“B implies A”)

� append([], L2, L2).
� append([X|Xs],Ys,[X|Zs]) :- append(Xs,Ys,Zs).

∙ PROLOG (1970)
∙ Datalog (1977)
∙ Various expert systems

42CMSC330 Spring 2022

Object-Oriented Languages

• Programs are built from objects
∙ Objects combine functions and data

� Often into “classes” which can inherit
class C { int x; int getX() {return x;} … }
class D extends C { … }

• “Base” may be either imperative or functional
∙ Smalltalk (1969)
∙ C++ (1986)
∙ OCaml (1987)
∙ Ruby (1993)
∙ Java (1995)

43CMSC330 Spring 2022

Other Languages
• There are lots of other languages w/ various features

∙ COBOL (1959) – Business applications
� Imperative, rich file structure

∙ BASIC (1964) – MS Visual Basic
� Originally designed for simplicity (as the name implies)
� Now it is object-oriented and event-driven, widely used for UIs

∙ Logo (1968) – Introduction to programming
∙ Forth (1969) – Mac Open Firmware

� Extremely simple stack-based language for PDP-8
∙ Ada (1979) – The DoD language

� Real-time
∙ Postscript (1982) – Printers- Based on Forth

44CMSC330 Spring 2022

Implementation

• How do we implement a programming language?
∙ Put another way: How do we get program P in some language L

to run?

• Two broad ways
∙ Compilation
∙ Interpretation

45CMSC330 Spring 2022

Compilation

• Source program translated (“compiled”) to another
language
∙ Traditionally: directly executable machine code

� gcc, clang

∙ Bytecode, Portable Code
� Javac

def greet(s)
 print("Hello, ”)
 print(s)
 print("!\n”)
end

11230452
23230456
01200312
…

“world” “Hello, world!”

46CMSC330 Spring 2022

Interpretation

• Interpreter executes each instruction in source
program one step at a time
∙ No separate executable

def greet(s)
 print("Hello, ”)
 print(s)
 print("!\n”)
end

“world”

“Hello, world!”

47CMSC330 Spring 2022

Quiz: What do you think?

• Which of the following languages has implementations as
a compiler and an interpreter?

• C
• Python
• Java
• All of the above

CMSC330 Spring 2022 48

Quiz: What do you think?

• Which of the following languages has implementations as
a compiler and an interpreter?

• C
• Python
• Java
• All of the above

CMSC330 Spring 2022 49

A language often has a
canonical kind of
implementation, but there
can be others

50

• Important features
∙ Regular expression handling
∙ Objects

� Inheritance

∙ Closures/code blocks
∙ Immutability
∙ Tail calls
∙ Pattern matching

� Unification

∙ Abstract types
∙ Garbage collection

• Declarations
∙ Explicit
∙ Implicit

• Type system
∙ Static
∙ Polymorphism
∙ Inference

∙ Dynamic
∙ Type safety

CMSC330 Spring 2022

Defining Paradigm: Elements of PLs

Architecture of Compilers, Interpreters

51

Front End

Intermediate
Representation

Back End

Parser Static
AnalyzerSourc

e

Compiler / Interpreter

CMSC330 Spring 2022

Front Ends and Back Ends

• Front ends handle syntax
∙ Parser converts source code into intermediate format (“parse

tree”) reflecting program structure
∙ Static analyzer checks parse tree for errors (e.g., erroneous use

of types), may also modify it
� What goes into static analyzer is language-dependent!

• Back ends handle semantics
∙ Compiler: back end (“code generator”) translates intermediate

representation into “object language”
∙ Interpreter: back end executes intermediate representation

directly

52CMSC330 Spring 2022

Compiler or Intepreter?

• gcc
∙ Compiler – C code translated to object code, executed directly

on hardware (as a separate step)
• javac
∙ Compiler – Java source code translated to Java byte code

• java
∙ Interpreter – Java byte code executed by virtual machine

• sh/csh/tcsh/bash
∙ Interpreter – commands executed by shell program

53CMSC330 Spring 2022

Compilers vs. Interpreters

• Compilers
∙ Generated code more efficient
∙ “Heavy”

• Interpreters
∙ Great for debugging
∙ Fast start time (no compilation), slow execution time

• In practice
∙ “General-purpose” programming languages (e.g., C, Java) are

often compiled, although debuggers provide interpreter support
∙ Scripting languages languages are often interpreted, even if

general-purpose

54CMSC330 Spring 2022

Attributes of a Good Language

• Cost of use
∙ Program execution (run time), program translation, program

creation, and program maintenance

• Portability of programs
∙ Develop on one computer system, run on another

• Programming environment
∙ External support for the language
∙ Libraries, documentation, community, IDEs, …

55CMSC330 Spring 2022

Attributes of a Good Language

• Clarity, simplicity, and unity
∙ Provides both a framework for thinking about algorithms and a

means of expressing those algorithms

• Orthogonality
∙ Every combination of features is meaningful
∙ Features work independently

• Naturalness for the application
∙ Program structure reflects the logical structure of algorithm

56CMSC330 Spring 2022

Attributes of a Good Language

• Support for abstraction
∙ Hide details where you don’t need them
∙ Program data reflects the problem you’re solving

• Security & safety
∙ Should be very difficult to write unsafe programs

• Ease of program verification
∙ Does a program correctly perform its required function?

57CMSC330 Spring 2022

What Programmers Want In a PL

Meyerovitch & Rabin, “Empirical analysis of programming language adoption”, OOPSLA’13 58CMSC330 Spring 2022

Summary

• Programming languages vary in their
∙ Syntax
∙ Semantics
∙ Style/paradigm and pragmatics
∙ Implementation

• They are designed for different purposes
∙ And goals change as the computing landscape changes, e.g., as

programmer time becomes more valuable than machine time
• Ideas from one language appear in others

59CMSC330 Spring 2022

