
CMSC 420: Fall 2022

Programming Assignment 2: Tips on Bulk-Insertion

The principal differences between the data structure in Programming Assignment 2 and the
standard kd-tree are (1) it is based on an extended binary tree (with points stored only in the
leaves, not the internal node), (2) leaf nodes can hold multiple points (based on the bucket size),
(3) points can be inserted “in-bulk” and the splitting process depends on the distribution of these
points.

Bulk-insertion is the most complicate of the operations. In this handout, we will discuss the
tree’s node structure and how to perform bulk insertion with an example.

Node Structure: As mentioned in the assignment handout, the easiest way to implement an
extended binary tree in Java is to use an inner class for the nodes, where there is a parent
class Node and two subclasses InternalNode and ExternalNode derived from this. You should
expect to have helper functions for each of your major operations (e.g., find, bulkInsert,
list, and so on). The internal-node helpers mostly serve to direct points down to the
appropriate external nodes, and the external node helpers do most of the real work.

These are abstract member functions, which means that Java will invoke the appropriate
function depending on the node type. For example, given a node pointer p, the call p.find(q)
will invoke the InternalNode find function if p is an internal node and the ExternalNode

find function if p is an external node. (If you do this properly, you should not need to resort
to checking a node’s type using “instance of”.)

Bulk Insertion: Let’s consider this in the general case, from the perspective of a tree that al-
ready contains some points. Consider the bulk insertion of five points into the tree shown in
Fig. 1(a), and suppose that the bucket size is two.

Helpers: You will have helper functions for both internal and external nodes. Both will take
a list of points (actually, a list of type LPoint) as the argument.

Internal node: The helper for the internal node takes the list of points and splits it into
two sublists consisting of the points to be placed in the left subtree and those for the
right subtree. This is based on the cutting dimension and cutting value. There are many
ways to perform this partition. I believe that the easiest (even if not the fastest) is to
sort the points according to the cutting dimension, determine the index where to split
the list, and then use Java’s subList function to do the actual partition. (Remember
that our convention is that points that fall on the splitting line are placed in the right
subtree.)

For example, in Fig. 1(b), we start by sorting the input along the cutting dimension of
the root, which is x, to obtain the list [SFO, ORD, DFW, SEA, DCA]. We partition this
about x = 5 into the sublists [SFO, ORD, DFW], which we recursively insert to the left
subtree and [SEA, DCA], which we recursively insert to the right.

This continues at all the internal nodes. For example, at the internal node “y = 6” the
list is split based on the y-coordinate into the sublist [SEA], which is sent to the left
subtree and [DCA], which is sent to the right.

1



BWI (8,8)

y = 6

x = 5

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

ATL

JFK

BWI

ATL (1,5)

JFK (9,4)

SFO (1,9)

ORD (2,6)

DFW (3,8)

SEA (5,5)

DCA (6,7)

bulk-insert:

BWI (8,8)

y = 6

x = 5

ATL (1,5)

JFK (9,4)

SFO (1,9)

ORD (2,6)

DFW (3,8)

x ≥ 5

SEA (5,5) DCA (6,7)

y = 6

x = 5

JFK (9,4) BWI (8,8)

SEA (5,5)

DCA (6,7)

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

JFK

BWI

SEA

DCA

SFO

ORD

DFW

ATL

y = 6

x = 5

!!

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

JFK

BWI

SEA

DCA

SFO

ORD

DFW

ATL

SEA (5,5)
JFK (9,4)

DCA (6,7)
BWI (8,8)

y = 7

(a)

(b)

(c)

(d)

x < 5

y ≥ 6y < 6ATL (1,5)

ORD (2,6)

DFW (3,8)

SFO (1,9)

ORD (2,6)
ATL (1,5)

SFO (1,9)
DFW (3,8)

sort by x

sort by y

Figure 1: Bulk-insertion of five points in a tree with bucket size two.

2



External node: When the points arrive at an external node, they are added to the associ-
ated bucket list in this node. If the number of points does not exceed the bucket size,
then we are done. (See the external nodes containing JFK and BWI in Fig. 1(c).)

Otherwise, we need to split this node. To do so, we first compute the bounding box for
all the points, both new and old. (See the shaded blue rectangle in Fig. 1(d).) Depending
on whether it is wider or taller, we split based on the x- or the y-axis. (In this case the
rectangle is taller, so the cutting dimension is set to y (1)).

We sort the points along this dimension and select the median coordinate. (In this case it
is midway between y-coordinates of ORD and DFW, which is y = 7.) We create an internal
node having this cutting dimension and cutting value, and we partition the points to its
left and right subtrees. (In this case, the sublist [ORD, ATL] is sent to the left subtree
and DFW, SFO] is sent to the right. Note that in this case, both lists with within a single
bucket, so we create a single external node for each and we are done.)

3


