
CMSC 420 Dave Mount

CMSC 420: Lecture 13
Point quadtrees and kd-trees

Geometric Data Structures: In today’s lecture we move in a new direction by covering a num-
ber of data structures designed for storing multi-dimensional geometric data. Geometric data
structures are fundamental to the efficient processing of data sets arising from myriad applica-
tions, including spatial databases, automated cartography (maps) and navigation, computer
graphics, robotics and motion planning, solid modeling and industrial engineering, particle
and fluid dynamics, molecular dynamics and drug design in computational biology, machine
learning, image processing and pattern recognition, computer vision.

Fundamentally, our objective is to store a large datasets consisting of geometric objects (e.g.,
points, lines and line segments, simple shapes (such as balls, rectangles, triangles), and com-
plex shapes such as surface meshes) in order to answer queries on these data sets efficiently.
While some of our explorations will involve delving into geometry and linear algebra, fortu-
nately most of what we will cover assumes no deep knowledge of geometric objects or their
representations. Given a collection of geometric objects, there are numerous types of queries
that we may wish to answer.

Nearest-Neighbor Searching: Store a set of points so that qiven a query point q, it is
possible to find the closest point of the set (or generally the closest k objects) to the
query point (see Fig. 1(a)).

Range Searching: Store a set of points so that given a query region R (e.g., a rectangle
or circle), it is possible to report (or count) all the points of the set that lie inside this
region (see Fig. 1(b)).

Point location: Store the subdivision of space into disjoint regions (e.g., the subdivision of
the globe into countries) so that given a query point q, it is possible determine the region
of the subdivision containing this point efficiently (see Fig. 1(c)).

Intersection Searching: Store a collection of geometric objects (e.g., rectangles), so that
given a query consisting of an object R of this same type, it is possible to report (or
count) all of the objects of the set that intersect the query object (see Fig. 1(d)).

Ray Shooting: Store a collection of object so that given any query ray, it is possible to
determine whether the ray hits any object of the set, and if so which object does it hit
first.

(a)

q
R

(b) (c)

q

(d)

R

Fig. 1: Common geometric queries: (a) nearest-neighbor searching, (b) range searching, (c) point
location, (d) intersection searching.

Lecture 13 1 Fall 2022



CMSC 420 Dave Mount

In all cases, you should imagine the size n of the set is huge, consisting for example of millions
of objects, and the objective is to answer the query in time that is significantly smaller than
n, ideally O(log n). We shall see that it is not always possible to achieve efficient query times
with storage that grows linearly with n. In such instances, we would like the storage to slowly,
for example, O(n log n). As with 1-dimensional data structures, it will also be desirable to
provide dynamic updates, allowing for the insertion and deletion of objects.

No Total Ordering: While we shall see that many of the ideas that we applied in the design of 1-
dimensional data structures can be adapted to the design of multi-dimensional data structure,
there is one fundamental challenge that we will face. Almost all 1-dimensional data structures
exploit the fact that the data are drawn from a total order. The existence of such a total
ordering is critical to all the tree-based search structures we studied as well as skip lists.

The only exception to this is hashing. But hashing is applicable only when we are searching for
exact matches. In typical geometric queries (as all the ones described above) exact matching
does not apply. Instead we are interested in notions such as “close to” or “contained within”
or “overlapping with,” none of which are amenable to hashing.

Point representations: Let’s first say a bit about representation and notation. We will assume
that each point pi is expressed as a d-element vector, that is pi = (pi,1, . . . , pi,d). To simplify
our presentation, we will usually describe our data structures in a 2-dimensional context,
but the generalization to higher dimensions will be straightforward. For this reason, we may
sometimes refer to a point’s in terms of its (x, y)-coordinates, for example, p = (px, py), rather
than p = (p1, p2).

While mathematicians label indices starting with 1, programming languages like Java prefer
to index starting with 0. Therefore, in Java, each point p is represented as a d-element vector:

float[][] p = new float[n][d]; // array of n points, each a d-element vector

In this example, the points are p[0], p[1], p[n-1], and the coordinates of the ith point are
given by p[i][0], p[i][1], p[i][d-1].

A better approach would be to define a class that represents a point object. An example
of a simple Point object can be found in the code block below. We will assume this in our
examples. Java defines a 2-dimensional point object, called Point2d.

Simple Point class
public class Point {

private float[] coord; // coordinate storage

public Point(int dim) { /* construct a zero point */ }

public int getDim() { return coord.length; }

public float get(int i) { return coord[i]; }

public void set(int i, float x) { coord[i] = x; }

public boolean equals(Point other) { /* compare with another point */ }

public float distanceTo(Point other) { /* compute distance to another point */ }

public String toString() { /* convert to string */ }

}

Lecture 13 2 Fall 2022



CMSC 420 Dave Mount

Now, your point set could be defined as an array of points, for example, Point[] pointSet

= new Point[n]. Note that although we should use pt.get(i) to get the ith coordinate of
a point pt, we will often be lazy in our code samples, and just write pt[i] instead.

Point quadtree: Let us first consider a natural way of generalizing unbalanced binary trees in
the 1-dimensional case to a d-dimensional context. Suppose that we wish to store a set
P = {p1, . . . , pn} of n points in d-dimensional space. In binary trees, each point naturally
splits the real line in two. In two dimensions if we run a vertical and horizontal line through
the point, it naturally subdivides the plane into four quadrants about this point. (In general
d-dimensional space, we consider d axis-parallel hyperplanes passing through the point. These
subdivide space into 2d orthants.)

To simplify the presentation, let us assume that we are working in 2-dimensional space. The
resulting data structure is called a point quadtree. (In dimension three, the corresponding
structure is naturally called an octtree. As the dimension grows, it is too complicated to figure
out the proper term for the number of children, and so the term quadtree is often used in
arbitrary dimensions, even though the outdegree of each node is 2d, not four.)

Each node has four (possibly null) children, corresponding to the four quadrants defined by
the 4-way subdivision. We label these according to the compass directions, as NW, NE, SW, and
SE. In terms of implementation, you can think of assigning these the values 0, 1, 2, 3, and
use them as indices to a 4-element array of children pointers.

As with standard (unbalanced) binary trees, points are inserted one by one. We descend
through the tree structure in a natural way. For example, we compare the newly inserted
point’s x and y coordinates to those of the root. If the x is larger and the y is smaller, we
recurse on the SE child. The insertion of each point results in a subdivision of a rectangular
region into four smaller rectangles. Consider the insertion of the following points (see Fig. 2):

(35, 40), (50, 10), (60, 75), (80, 65), (85, 15), (5, 45), (25, 35), (90, 5).

(35, 40)

(60, 75)

(25, 35)

(50, 10)

(35, 40)
(5, 45)

(60, 75)

(25, 35)

(80, 65)

(85, 15)

(90, 5)

(50, 10)

(90, 5)

(5, 45)

(85, 15)

(80, 65)

(35, 40)

(60, 75)

(50, 10)

Fig. 2: Point quadtree subdivision.

The final subdivision and tree structure are shown in Fig. 3.

Each node in the tree is naturally associated with a rectangular region of space, which we
call its cell. Note that some rectangles are special in that they extend to infinity. Since semi-
infinite rectangles sometimes bother people, it is not uncommon to assume that everything
is contained within one large bounding rectangle, which may be provided by the user when
the tree is first constructed.

Lecture 13 3 Fall 2022



CMSC 420 Dave Mount

(a) (b)

(35, 40)
(5, 45)

(60, 75)

(25, 35)

(80, 65)

(85, 15)

(90, 5)

(50, 10)

(x, y)

(25, 35)(60, 75)(5, 45) (50, 10)

(80, 65) (85, 15) (90, 5)

(35, 40)

NW NE SW SE

Fig. 3: Point quadtree.

We will not discuss algorithms for the point quad-tree in detail. Instead, we will defer this
discussion to point kd-trees, and simply note that for each operation on a kd-tree, there is a
similar algorithm for quadtrees.

Point kd-tree: As observed above, point quadtrees can be generalized to higher dimensions, the
number of children grows exponentially in the dimension, as 2d. For example, if you are
working in 20-dimensional space, every node has 220, or roughly a million children! Clearly,
the simple quadtree idea is not scalable to very high dimensions. Next, we describe an
alternative data structure, that always results in a binary tree.

As in the case of a quadtree, the cell associated with each node is an axis-aligned (hyper-
)rectangle. When a new point is inserted into some leaf node’s cell, we split the cell by a
horizontal or vertical splitting line, which passes through this point (or generally a (d − 1)-
dimensional axis-aligned hyperplane). The split is specified by its cutting dimension, cutDim,
which can be represented as an integer from 0 to d−1 and its cutting value. As with quadtrees,
the cut is made through the point, so the cutting value is p.point[cutDim]. By conven-
tion, points whose coordinate value is strictly smaller than the cutting value (pt[cutDim] <

point[cutDim]) are stored in the left subtree and those with values greater than or equal are
in the right subtree.

class KDNode { // node in a kd-tree

Point point // splitting point

int cutDim // cutting dimension (optional)

KDNode left, right // children

KDNode(Point point, int cutDim) { // constructor

this.point = point

this.cutDim = cutDim

left = right = null

}

boolean inLeftSubtree(Point pt) { // is pt in left subtree?

return pt[cutDim] < point[cutDim]

}

}

The resulting data structure is called a point kd-tree. Actually, this is a bit of a misnomer.
The data structure was named by its inventor Jon Bentley to be a 2-d tree in the plane, a

Lecture 13 4 Fall 2022



CMSC 420 Dave Mount

3-d tree in 3-space, and a k-d tree in dimension k. However, over time the name “kd-tree”
became commonly used irrespective of dimension. Thus it is common to say a “kd-tree in
dimension 3” rather than a “3-d tree”.

How to Cut Space? There are a number of ways to select the cutting dimension. The most
common is just to alternate (or generally cycle) among the possible axes at each new level of
the tree. For example, at the root node we cut orthogonal to the x-axis (or 0th coordinate),
for its children we cut orthogonal to y (or 1st coordinate), for the grandchildren we cut again
along x, and so on. In higher dimensions, we cycle through the various dimensions. An
example is shown in Fig. 4. Note that when this is done, we do not need to explicitly store
the cutting dimension in each node, since it can be computed on the fly as we traverse the
tree.

(a) (b)

(35, 40)
(5, 45)

(60, 75)

(25, 35)

(80, 65)

(85, 15)

(90, 5)

(50, 10)

(25, 35) (60, 75)

(5, 45) (50, 10)

(80, 65)

(85, 15)

(90, 5)

(35, 40)

(x, y)

(x, y)

cut on x

cut on y

Fig. 4: Point kd-tree decomposition.

We will assume this cyclic method of choosing the cutting dimension in our examples, but
there are better ways. For example, Bentley proposed that the cutting dimension should be
chosen based on the point distribution. The cut should be made perpendicular to the longest
side of the point set’s bounding box. He also suggested that the cut should be made through
the median point of the set. This tends to produce nice “fat” cells and has height O(log n).

As with unbalanced binary search trees, it is possible to prove that if keys are inserted in
random order, then the expected height of the tree is O(log n), where n is the number of
points in the tree.

Insertion into kd-trees: Insertion operates as it would for a regular binary search tree. We
descend the tree until falling out, and then we create a node containing the point and assign
its cutting dimension by whatever policy is used by the tree. The principal utility function
is presented in the following code block. The function takes three arguments, the point pt
being inserted, the current node p, and the cutting dimension of the newly created node. The
initial call is root = insert(pt, root, 0).

Observe that whenever we make a recursive call, we advance the cutting dimension by one
(cd + 1) but we wrap around by modding this with the dimension of the space. An example
is shown in Fig. 5, where we insert the point (50, 90) into the kd-tree of Fig. 4. We descend
the tree until we fall out on the left subtree of node (60, 75). We create a new node at this
point, and the cutting dimension cycles from the parent’s x-cutting dimension (cutDim = 0)
to a y-cutting dimension (cutDim = 1).

Lecture 13 5 Fall 2022



CMSC 420 Dave Mount

kd-tree Insertion
KDNode insert(Point pt, KDNode p, int cd) { // insert pt in subtree p with cutDim cd

if (p == null) { // fell out of tree

p = new KDNode(pt, cd) // create new leaf

} else if (p.point.equals(pt)) {

throw Exception("Error - duplicate point")

} else if (p.inLeftSubtree(pt)) { // insert into left subtree

p.left = insert(pt, p.left, (cd + 1) % dim)

} else { // insert into right subtree

p.right = insert(pt, p.right, (cd + 1) % dim)

}

return p

}

(35, 40)
(5, 45)

(60, 75)

(80, 65)

(85, 15)

(90, 5)

(50, 10)

(25, 35) (60, 75)

(5, 45) (50, 10)

(80, 65)

(85, 15)

(90, 5)

(35, 40)
insert

(50, 90)

(50, 90)

(35, 40)
(5, 45)

(60, 75)

(25, 35)

(80, 65)

(85, 15)

(90, 5)

(50, 10)

(50,90)

(25, 35)

Fig. 5: Inserting (50, 90) into the point kd-tree of Fig. 4.

Analysis: The space needed by the kd-tree to store n points in d-dimensional space is O(n), which
is optimal. (We treat d like a constant, independent of n. In fact, it takes O(dn) space to
store the coordinates, but since d is a constant, we can ignore the d factor.)

The height analysis of the kd-tree is essentially the same as that of the unbalanced binary
tree. If n points are inserted in random order, then the height of the tree will be O(log n) in
expectation. (Below, we discuss deletion. Because we chose replacement nodes in a biased
way, always from the right subtree, it is reasonable that the same systematic bias issues that
leads to O(

√
n) tree height over a long series of random insertions and deletions.)

Probably the best way to maintain balance in a kd-tree is to simply rebuild unbalanced
subtrees, similar to what we did with scapegoat trees. This raises the question of how to build
a well-balanced tree for a fixed set of points. Suppose that we use the method of cycling the
cutting dimension from level to level of the tree to build a kd-tree for a point set P . At the root
level, we could choose the splitting point to be the median of P according to x-coordinates.
Then, after partitioning the set about this point, into say PL and PR, the splitting value for
each set would be the respective medians but according to the y-coordinates. By doing this,
we guarantee that the number of points in each subtree is essentially half that of its parent,
and this implies that the overall tree height is O(log n).

By the way, this raises an interesting computational question. We know that it is possible to
build a 1-dimensional tree from a sorted point set in O(n log n) time, by repeatedly splitting
on the median. Can you generalize this to construct a perfectly balanced 2-dimensional kd-
tree also in O(n log n) time. The tricky issue is that sorting on x does not help you in finding
the y-splits, and sorting on y does not help you with the x splits. This is an interesting

Lecture 13 6 Fall 2022



CMSC 420 Dave Mount

computational problem to think about. (The answer is that it is possible to build such a tree
in O(n log n) time, but it takes a bit of cleverness. We will leave this as an exercise.)

Finding Replacements for Deletion: We will next discuss deletion from kd-trees. As we saw
with deletion in standard binary search trees, an issue that will arise when deleting a point
from the middle of the tree is what to use in place of this node, that is, the replacement point.
It is not as simple as selecting the next point in an inorder traversal of the tree, since we need
a point that satisfies the necessary geometric conditions.

Suppose that we wish to delete a point in node p where p.cutDim == 0 (that is, vertical cut).
An appropriate choice for the replacement point is the point of p.right that has the smallest
x-coordinate. (What do we do if the right child is null? We’ll come to this later.) Finding
such a point is a nice exercise, since it illustrates how programming is done with kd-trees.

Let us derive a procedure findMin(p, i) that computes the point in the subtree rooted at
node p that has the smallest ith coordinate. The procedure operates recursively. When we
arrive at a node p, if the cutting dimension matches i, given that the subtrees are ordered
by the ith coordinate, we know that the minimum cannot lie in the right subtree. If the left
child is non-null, then the desired point is there, and we recursively search this subtree (see
Fig. 6(a)). If the left child is null, we return p’s associated point (see Fig. 6(b)).

(x, y) (x, y)

x

(x, y)

x

p

findMin(p.left, 0)

u.point

return p.point

y

findMin(p.left, 0)

p.pointmin[0]

pp

findMin(p.right, 0)
Min by x-coord

(a) (b) (c)

Fig. 6: Cases in findMin.

Finally, if the cutting dimension does not equal i, then the minimum may either in the
left/right subtrees or might be p.point itself. We check all three cases and return the
minimum along the ith coordinate (see Fig. 6(c)). The code is presented below. Let’s imagine
that we have utility function min[i](q1, q2), which returns whichever point q1 or q2 that
has the smaller i-th coordinate. (A null point is never favored over a non-null point.)

Find the minimum point in subtree along ith coordinate
Point findMin(KDNode p, int i) { // get min point along dim i

if (p == null) return null // fell out of tree?

if (p.cutDim == i) { // cutting dimension matches i?

if (p.left == null) // no left child?

return p.point // use this point

else

return findMin(p.left, i) // get min from left subtree

} else { // it may be in either side

return min[i](findMin(p.left), p.point, findMin(p.right))

}

}

Lecture 13 7 Fall 2022



CMSC 420 Dave Mount

Fig. 7 presents an example of the execution of this algorithm to find the point with the
minimum x-coordinate in the subtree rooted at (55, 40). Since this node splits horizontally,
we need to visit both of its subtrees to find their minimum x values. (These will be (15, 10)
for the left subtree and (10, 65) for the right subtree.) These values are then compared with
the point at the root to obtain the overall x-minimum point, namely (10, 65). Observe that
because the subtrees at (45, 20) and (35, 75) both split on the x-coordinate, and we are looking
for the point with the minimum x-coordinate, we do not need to search their right subtrees.
The nodes visited in the search are shaded in blue.

(a) (b)

(x, y)

(x, y)

cut on x

cut on y

(30, 25)

(35, 75)

(55, 40)

(45, 20)

(60, 30)

(70, 15)

(80, 90)

(15, 10)
(25, 15)

(70, 60)
(10, 65)

(25, 85)

(20, 50)

(55, 40)

(45, 20)

(25, 15)

(15, 10) (70, 15)

(30, 25) (60, 30)

(35, 75)

(20, 50) (25, 85)

(10, 65) (70, 60)

(80, 90)

Fig. 7: Example of findMin when i = 0 (the x-coordinate) on the subtree rooted at (55, 40). The
function returns (10, 65).

Deletion from a kd-tree: As with insertion, deletion is similar as for unbalanced binary search
trees. However, there is an interesting twist here. Recall that in the 1-dimensional case we
needed to consider a number of different cases. If the node is a leaf we just delete the node.
Otherwise, its deletion would result in a “hole” in the tree. We need to find an appropriate
replacement. In the 1-dimensional case, we were able to simplify this if the node has a single
child (by making this child the new child of our parent). However, this would move the child
from an even level to an odd level, or vice versa, and this would violate our assumption that
the cutting dimensions cycle among the coordinates. (Note this might not be an issue for
some implementations of the kd-tree, where the cutting dimension is selected by some other
policy, but to keep things as clean as possible, our deletion procedure will not alter a node’s
cutting dimension.)

Let us assume first that the right subtree is non-empty. Recall that in the 1-dimensional case,
the replacement key was taken to be the smallest key from the right child, and after using the
replacement to fill the hole, we recursively deleted the replacement. How do we generalize this
to the multi-dimensional case? The proper thing to do is to find the point whose coordinate
along the current cutting dimension is minimum. Thus, if the cutting dimension is the x-axis,
say, then the replacement key is the point with the smallest x-coordinate in the right subtree.
We use the findMin() function (given above) to do this.

On the other hand, what if the right subtree is empty? At first, it might seem that the
right thing to do is to select the maximum node from the left subtree. However, there is a
subtle trap here. Recall that we maintain the invariant that points whose coordinates are
equal to the cutting dimension are stored in the right subtree. If we select the replacement
point to be the point with the maximum coordinate from the left subtree, and if there are

Lecture 13 8 Fall 2022



CMSC 420 Dave Mount

other points with the same coordinate value in this subtree, then we will have violated our
invariant. There is a clever trick for getting around this though. For the replacement element
we will select the minimum (not maximum) point from the left subtree, and we move the left
subtree over and becomes the new right subtree. The left child pointer is set to null. Tricky!
Be sure you understand why this works. The code is given below.

kd-tree Deletion
KDNode delete(Point pt, KDNode p) {

if (p == null) { // fell out of tree?

throw Exception("Error - Point does not exist");

} else if (p.point.equals(pt)) { // found it

if (p.right != null) { // can replace from right

p.point = findMin(p.right, p.cutDim) // find and copy replacement

p.right = delete(p.point, p.right) // delete from right

} else if (p.left != null) { // can replace from left

p.point = findMin(p.left, p.cutDim) // find and copy replacement

p.right = delete(p.point, p.left) // delete left but move to right!!

p.left = null // left subtree is now empty

} else { // deleted point in leaf

p = null // remove this leaf

}

} else if (p.inLeftSubtree(pt)) {

p.left = delete(pt, p.left) // delete from left subtree

} else { // delete from right subtree

p.right = delete(pt, p.right)

}

return p

}

An example of the operation of this deletion algorithm is presented in Fig. 8. The original
objective is to delete the point (35, 60). This is at the root of the tree. Because the cutting
dimension is vertical, we search its right subtree to find the point with the minimum x-
coordinate, which is (50, 30). The point is copied to the root. Note that when this happens,
the associated subdivision of space immediately changes. (See the top right of Fig. 8). The
picture is a bit wonky, because (50, 30) appears twice in the tree. Once as a vertical splitted
at the root and later as a horizontal splitter.

We then recursively delete (50, 30) from the root’s right subtree. This recursive call then seeks
the node p containing (50, 30). Note that this node has no right child, but unlike standard
binary search trees, we cannot simply unlink it from the tree (for the reasons described above).
Instead, we observe that its cutting dimension is horizontal, and we search for the point with
the minimum y-coordinate in p’s left subtree, which is (60, 10). We copy (60, 10) to p. Again,
the subdivision changes. Node that the vertical splitting line through (70, 20), which was
blocked by (50, 30) now extends all the way to the top of the cell.

We now recursively delete (60, 10) from p’s left subtree. It is a leaf, so it may simply be
unlinked from the tree. (We don’t see the change in the subdivision, since (60, 10) already
exists in the tree.) Finally, when we return to the parent of (70, 20), since this was a left-side
deletion, we need to move the subtree rooted at (70, 20) over to the right side of its parent
(60, 10). Following this, we return all the way back to the root without any further changes.
(Whew!)

Lecture 13 9 Fall 2022



CMSC 420 Dave Mount

(35, 60)

(20, 45)

(10, 35)

(20, 20) (60, 10)

(50, 30)

(60, 80)

(70, 20)

(80, 40)

(90, 60)

(20, 45)

(35, 60)

(60, 80)

(10, 35)

(20, 20)

(80, 40)

(50, 30) (90, 60)

(70, 20)

(60, 10)

(20, 45)

(50, 30)

(60, 80)

(10, 35)

(20, 20)

(80, 40)

(50, 30) (90, 60)

(70, 20)

(60, 10)

replacement

delete(35,60)

copy

delete(50,30)

replacement

copy

(20, 45)

(50, 30)

(60, 80)

(10, 35)

(20, 20)

(80, 40)

(60, 10) (90, 60)

(70, 20)

(60, 10)

delete(60,10)

(20, 45)

(50, 30)

(60, 80)

(10, 35)

(20, 20)

(80, 40)

(60, 10) (90, 60)

(70, 20)

(20, 45)

(10, 35)

(20, 20)

(60, 80)

(70, 20)

(80, 40)

(90, 60)

Moved from left

to right child

(60, 10)

(50, 30)

(60, 80)

(70, 20)

(80, 40)

(90, 60)

(60, 10)

(50, 30)

(60, 80)

(70, 20)

(80, 40)

(90, 60)

(60, 10)

(50, 30)

(70, 20)
(60, 10)

Final

(20, 45)

(10, 35)

(20, 20)

(60, 80)

(70, 20)

(80, 40)

(90, 60)

(60, 10)

(50, 30)

(70, 20)

Fig. 8: Deletion from a kd-tree.

Lecture 13 10 Fall 2022


