
This class is being recorded
Please turn off your video and/or video if you do
not wish to be recorded

Activity
Service
BroadcastReceiver
ContentProvider

Apps are made from components
Android instantiates and runs them as needed
Each component has its own purpose and APIs
Apps can have multiple “entry points”

Primary class for user interaction
Conceptually implements a single, focused task
that the user can do

Implementation changes slightly with introduction of
Fragments (discussed later in the course)

Example App
Android Messages

package com.android.messaging.ui.conversation;
…
public class ConversationActivity extends BugleActionBarActivity

implements ContactPickerFragmentHost,
ConversationFragmentHost, ConversationActivityUiStateHost {

…

Android source code available at: https://source.android.com

Runs in the background
to perform long-running operations

to support interaction with remote processes

package com.android.mms.service;
…
/**
* System service to process MMS API requests
*/
public class MmsService extends Service implements

MmsRequest.RequestManager {
…

Component that listens for and responds to
events
Acts as the subscriber in publish/subscribe
pattern

Events are represented by an Intent and then
broadcast by the platform
BroadcastReceivers can receive and respond to to
broadcast events

package com.android.messaging.receiver;
…
/**
* Class that receives incoming SMS messages on KLP+ Devices.
*/
public final class SmsDeliverReceiver extends BroadcastReceiver {

@Override
public void onReceive(final Context context, final Intent intent) {

SmsReceiver.deliverSmsIntent(context, intent);
}

}

Store & share data across applications
Uses database-style interface

Handles interprocess communication

package com.android.mms;
...
/**
* Suggestions provider for mms.
* Queries the "words" table to provide possible word suggestions.
*/

public class SuggestionsProvider extends android.content.ContentProvider {
...

User enters an address
App displays a map of area around the address

MapLocation

Android
Project

Android
Package

.apk

.apk Installed
on Device

Compilation &
Packaging

.apk
Signing

Define resources
Implement application classes
Package application
Install & run application

Resources are non-source code entities
Many different resource types, e.g.,

Layout, strings, images, menus, & animations

Allows apps to be customized for different
devices and users
See: https://developer.android.com/

guide/topics/resources/overview.html

Types: String, String Array, Plurals

Types: String, String Array, Plurals
Typically stored in res/values/*.xml
Specified in XML, e.g.,

<string name="hello">Hello World!</string>

Can include formatting and styling codes

Accessed by other resources as:
@string/string_name

Accessed in Kotlin as:
R.string.string_name

values/strings.xml
<resources>

<string name="show_map_string">Show Map</string>
<string name="location_string">Enter Location</string>

</resources>

values-it/strings.xml
<resources>

<string name="show_map_string">Mostra la mappa</string>
<string name="location_string">Digita l\'indirizzo</string>

</resources>

If your default language is Italian,
@string/location_string is

“Digita l’indirizzo”

Otherwise, it’s,
“Enter Location”

UI layout specified in XML files
Some tools allow visual layout

XML files typically stored in res/layout/*.xml
Accessed in Kotlin as R.layout. layout_name
Accessed by other resources as:
@layout/layout_name

Can specify different layout files based on your
device’s orientation, screen size, etc.

At compilation time, resources are used to
generate the R class
App code uses the R class to access resources
R class is generated directly into bytecode

package course.examples.maplocation;

public final class R {
public static final class color {
public static final int accent=0x7f010000;
public static final int edit_text=0x7f010001;
public static final int primary=0x7f010002;
public static final int primary_dark=0x7f010003;
public static final int primary_light=0x7f010004;
public static final int primary_text=0x7f010005;
public static final int secondary_text=0x7f010006;

}

public static final class dimen {
public static final int activity_margin=0x7f020000;

}
public static final class id {
public static final int location=0x7f030000;
public static final int mapButton=0x7f030001;

}
public static final class layout {
public static final int main=0x7f040000;

}
public static final class mipmap {
public static final int ic_launcher=0x7f050000;

}

public static final class string {
public static final int location_string=0x7f060000;
public static final int show_map_string=0x7f060001;

}
public static final class style {
public static final int MaterialTheme=0x7f070000;

}
}

Usually involves at least one Activity
Activity initialization code usually in onCreate()

Typical onCreate() workflow
Restore saved state, if necessary

Set content view

Initialize UI elements

Link UI elements to code actions

View binding allows code to easily interact with
views.
If enabled, view binding generates a binding
class for each XML layout file
Binding class contains direct references to all
views that have an ID in the corresponding layout

view binding replaces findViewById()

Open MapLocation.kt
Review with at least one other student
Which of the typical workflow steps are
represented in that code?
Where are those steps implemented in the code?

System packages application components &
resources into a .apk file
Developers specify required application
information in a file called AndroidManifest.xml

Information includes:
Application name
Application components
Other

Required permissions
Application features
etc.

From IDE run app in the emulator or device
From command line

Enable USB Debugging on the device
See: https://developer.android.com/studio/debug/dev-
options.html

%adb install <path_to_apk>

The Activity Class

MapLocation

