




Google’s Firebase Platform

Adding services to your Android application
User Authentication 

Realtime Database



Firebase is a mobile and web application development platform 
developed by Firebase, Inc. in 2011, then acquired by Google in 2014.
As of October 2018, the Firebase platform has 18 products, which are 
used by 1.5+ million apps - wikipedia

Example of mobile backend as a service design pattern

Similar to AWS for web applications



Adding Firebase to an Android App
Firebase Email Authentication Service

Firebase Realtime Database



Two choices:
Manually add firebase through the firebase console 
(https://console.firebase.google.com/)
Directly from inside Android Studio (select Tools -> Firebase from 
the menu). This option requires you to select a service to add to 
your app 

Process generates a google-services.json file that goes 
into your project directory

See: https://firebase.google.com/docs/
android/setup#kotlin+ktx



Allows users to sign up with email and password

Stores users’ login information separate from 
database

Activities gain access to currently logged-in user via 
API

Combined with security rules can restrict data access 
to the logged in user (Note: this requires the data be 
structured in a particular pattern – more on this later)



Can view all application users from the firebase 
console

See: 
https://firebase.google.com/docs/reference/android/

com/google/firebase/auth/FirebaseAuth.html



FirebaseEmailAuthExample



Firebase offers two types of database services
Realtime Database (Original)

Cloud Firestore (Newer service)

For differences between these offerings, see
https://firebase.google.com/docs/database/rtdb-vs-
firestore?authuser=0



This lecture focuses on the original Realtime 
Database

An efficient, low-latency solution for mobile apps 
that require synced states across clients in real-
time



Add dependency for Realtime Database to your 
app-level build.gradle file

e.g., implementation 'com.google.firebase:firebase-
database:20.0.4’

Configure Realtime Database Rules

See: https://firebase.google.com/docs/database/
android/start?authuser=0



{

"rules": {

".read": true,

".write": true

}

}



{

"rules": {

".read": "auth != null",

".write": "auth != null"

}

}



Realtime Database has a REST API

Use a Firebase Database URL as a REST endpoint

Append .json to the end of the URL and send a request 
from an HTTPS client

See: https://firebase.google.com/docs/reference/
rest/database



Data is structured and a JSON tree

When you add data to the JSON tree, it becomes a 
node in the existing JSON structure with an 
associated key



Avoid nesting data
Iterating through the data becomes problematic

Data requests can end up returning the entire tree



Flatten the data structure

Split data into separate paths (also called 
denormalization)

Can efficiently download data in separate calls as 
needed



Data written to FirebaseDatabase reference 

Retrieved by attaching an asynchronous listener to 
the reference

Listener triggered once for the initial state of the 
data and again anytime the data changes

See: https://firebase.google.com/docs/
database/android/read-and-write?authuser=0



Working with lists of Data

See: https://firebase.google.com/docs/
database/android/lists-of-data?authuser=0



Called MyHomeLibrary on Firebase

Allows you to add the authors in your home library 
and corresponding titles



FirebaseRealtimeDatabaseExample



API Reference:

See: https://firebase.google.com/docs/reference/android/
com/google/firebase/database/DatabaseReference.html



FirebaseRealtimeDatabaseExample

FirebaseEmailAuthExample


