
This class is being recorded
Please turn off your video and/or video if you do
not wish to be recorded

The Activity class
The Task Backstack
The Activity lifecycle
Starting an Activity
Handling configuration changes

Provides a visual interface for user interaction
Conceptually*, each Activity typically supports one
focused thing a user can do, such as

Viewing an email message
Showing a login screen

* Often implemented with help of a Fragment. For now, we will ignore
Fragments

Applications can comprise several Activities
User interaction can result in navigating across
these Activities

Tasks
The Task Backstack
Suspending and resuming Activities

A set of related Activities
Can come from different applications

Most Tasks start at the home screen

When an Activity is launched, it goes on top of the
backstack
When the Activity is destroyed, it is popped off the
backstack

Activity 1
Activity 2
Activity 3

Activity 1 Activity 2 Activity 3

Task Backstack

Activities are created, suspended, resumed and
destroyed as necessary when an application executes
Some of these actions depend on user behavior

e.g., User hits back button

Some depend on Android
e.g., Android can kill Activities when it needs their resources

Resumed/Running—Visible, user interacting
Paused—Visible, user not interacting, can be
terminated in older versions of Android
Stopped—Not visible, can be terminated

Android announces Activity lifecycle state
changes to Activities by calling specific Activity
methods

Known as Activity lifecycle callback methods

protected open fun onCreate(savedInstanceState: Bundle?): Unit

protected open fun onStart(): Unit

protected open fun onResume(): Unit

protected open fun onPause(): Unit

protected open fun onRestart(): Unit

protected open fun onStop(): Unit

protected open fun onDestroy(): Unit

Entire
Lifetime

Visible

Visible & in
Foreground

MapLocation

Called when Activity is created
Sets up initial state

Call super.onCreate()

Set the Activity’s content view

Retain references to UI views as necessary

Configure views as necessary

Activity is about to become visible
Typical actions

Start visible-only behaviors

Load persistent application state

Activity is visible and about to start interacting
with user
Typical actions

Start foreground-only behaviors

Focus about to switch to another Activity
Typical actions

Shutdown foreground-only behaviors

Save persistent state

Activity is no longer visible to user
may be restarted later

Typical actions
Save persistent state
Do CPU-intensive save procedures

Note: Pre-Honeycomb - this method may not be
called if Android kills your application

Called if the Activity has been stopped and is
about to be started again
Typical actions

Special processing needed only after having been
stopped

Activity is about to be destroyed
Typical actions

Release Activity-wide resources

Note: may not be called if Android kills your
application

2022-09-12 10:47:02.018 12821-12821/course.examples.maplocation
I/MapLocation: Another activity is taking focus (this activity is about to
be "paused")
2022-09-12 10:47:04.145 12821-12821/course.examples.maplocation
I/MapLocation: The activity is no longer visible (it is now "stopped")
2022-09-12 10:47:19.454 12821-12821/course.examples.maplocation
I/MapLocation: The activity is visible and about to be restarted.
2022-09-12 10:47:19.454 12821-12821/course.examples.maplocation
I/MapLocation: The activity is visible and about to be started.
2022-09-12 10:47:19.455 12821-12821/course.examples.maplocation
I/MapLocation: The activity is visible and has focus (it is now "resumed")

Create an Intent object matching the Activity to
start
Pass Intent to methods, such as:

Activity.startActivity()

ActivityResultCaller.registerForActivityResult()

Pass Intent to methods, such as:
Activity.startActivity()

ActivityResultCaller.registerForActivityResult()

Create Intent
Check for presence of Intent handler
Call Activity.startActivity()

MapLocation

Similar to MapLocation, but gets address from
Contacts database

MapLocation
FromContacts

Example use case
Define ActivityResultLauncher<Intent> instance

This instance calls registerForActivityResult(), passing in necessary
callback info
This info includes ActivityResultContracts.StartActivityForResult()
contract interface instance

Call ActivityResultLauncher<Intent>.launch(intent) to start
desired Activity

Registered callback is started when Activity returns

Keyboard, orientation, locale, etc.
Device configuration can change at runtime
On configuration changes, Android usually kills
the current Activity & then restarts it

Activity restarting should be fast
Options

Save Activity state in Bundle

Use a separate Object (i.e., ViewModel)

Manually handle the configuration change (not usually
recommended)

Android saves some information such as View
state in a Bundle
You must save other state yourself

Android calls onSaveInstanceState(Bundle)
after onStop() for API 28+
before onStop() for API <28

Save Activity instance state to system-provided
Bundle

When Activity is restarted, you can restore Activity
state from a system-provided Bundle in:

onCreate(Bundle)

onRestoreInstanceState(Bundle), which is called
between onStart() and onPostCreate()

Ticker

Hard to recompute data can be cached to speed
up handling of configuration changes
Current recommendation uses ViewModel class
We’ll come back to this in a later lesson

Can prevent system from restarting Activity
Declare the configuration changes your Activity
handles in AndroidManifest.xml file, e.g.,
<activity android:name=".MyActivity“

android:configChanges=
"orientation|screensize|keyboardHidden”…>

When configuration changes, Activity’ s
onConfigurationChanged() method is called
Passed a Configuration object specifying the new
device configuration

Should generally avoid manual approach
Hard to get right

Fragile to system changes

The Intent Class

MapLocation
MapLocationFromContacts
Ticker

