
This class is being recorded
Please turn off your video and/or video if you do
not wish to be recorded

Tablets have larger displays than phones do
They can support multiple UI panes / user
behaviors at the same time

The “1 activity – 1 thing the user can do” heuristic may
not make sense for larger devices

Application uses two Activities
One shows titles of Shakespeare plays & allows user to
select one title

The other shows a quote from the selected play

FragmentQuoteViewerWithActivity

This layout is reasonable on a phone
But unnecessary on a larger device

Use two cooperating layout units on one screen

Typically represents a behavior / portion of UI
Multiple Fragments can be embedded in an
Activity to create a multi-pane UI
A single Fragment can be reused across multiple
Activities

A Fragment’s lifecycle is coordinated with the
lifecycle of its containing/hosting Activity
Fragments have their own lifecycles and receive
their own callbacks

Resumed
Fragment is visible in the hosting Activity

Paused
Another Activity is in the foreground and has focus, this
Fragment’s hosting Activity is still visible

Stopped
The Fragment is not visible

Activity is created
Fragment is first attached to its
Activity

onAttach()

Initialize the Fragment
Note: The hosting Activity may
not be fully created at this point

onAttach()

onCreate()

Fragment returns its user
interface View

onAttach()

onCreate()

onCreateView()

Fragment can set up its user
interface View

onAttach()

onCreate()

onCreateView()

onViewCreated()

Activity is started
Hosting Activity about
to become visible

onStart ()

Activity is resumed
Hosting Activity is about to
become visible and ready for
user interaction

onResume()

Activity is paused
Hosting Activity is visible, but
does not have focus

onPause()

Activity is stopped
Hosting Activity is no longer
visible

onStop ()

Activity is destroyed
View previously created in
onCreateView() has been detached
from the Activity
Clean up view resources

onDestroyView()

Fragment is no longer in use
Clean up Fragment resources

onDestroyView()

onDestroy()

Fragment no longer attached
to its activity
Null out references to hosting
Activity

onDestroyView()

onDestroy()

onDetach()

Two general ways to add a Fragment to an
Activity’s layout

Declare it statically in the Activity’s layout file

Add it programmatically using the FragmentManager

Layout can be inflated in onCreateView()
onCreateView() must return the View at the root of
the Fragment’s layout
This View is added to the containing Activity

Display titles and quotes in two Fragments, side-
by-side
Fragments are statically added to UI based on a
layout file

FragmentStaticLayout

Fragments should be reusable across Activities
Avoid coupling Fragments

i.e., Frag1 should not directly interact with Frag2

Coupling should be handled by separate components,
such as ViewModels (preferred) or callbacks to hosting
Activity

While an Activity is running you can add and
remove Fragments from its layout
Four-step process

1. Get reference to the FragmentManager
2. Begin a FragmentTransaction
3. Add the Fragment
4. Commit the FragmentTransaction

Displays titles and quotes side-by-side in two
Fragments
Layout file reserves space for Fragments (using
FragmentContainerView elements)
Fragments are programmatically added to UI at
runtime

FragmentProgrammaticLayout

Fragment transactions allow you to dynamically
change your app’s user interface
Can make the interface more fluid & take better
advantage of available screen space

Starts with a single Fragment
Changes to two-Fragment layout when user
selects a title

FragmentDynamicLayout

FragmentDynamicLayout

Android provides support for structured
navigation between app components
See:
https://developer.android.com/guide/navigation

Every app you build has a fixed start destination
Actions take you to a new destination
Navigation state is a stack of destinations
Up and Back actions supported

Up doesn’t exit the app; back does

SafeArgs (gradle plugin) ensures type safety in
argument passing

Designed for apps with one Activity and multiple
Fragment destinations
Each Activity has a navigation graph – XML resource
that defines navigation paths through an app
(destinations and actions)
NavHostFragment: An empty container that displays
destinations from your navigation graph
NavController: An object that manages app navigation
within a NavHostFragment

Using SafeArgs is recommended best practice
Once enabled, it generates code for each navigation action

A class for each originating destination, named according to the
originating destination class name, and the word "Directions

A static method for each action defined in the originating
destination, that takes any defined action parameters and returns
a NavDirections object that can be passed to navigate()

HelloAndroidWithFragments

LifeCycleAware Components

FragmentQuoteViewerWithActivity
FragmentStaticLayout
FragmentProgrammaticLayout
FragmentDynamicLayout
HelloAndroidWithFragments

