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Administrative

This class is being recorded

Midterm: Thursday, Oct. 20 (2 weeks from Thursday)

Problem 3a (on PS#4): N is now 465.

Regrade policy: Regrade requests should be submitted at most 1 
week after both the solutions and the grades for the assignment 
have been released.
For Problem sets #1 and #2, you can still submit regrade 
requests until 1 week from today.

• In class
• Open book (including textbook), no electronic devices
• Will cover classical cryptographic, private key encryption, 

and public key encryption and key exchange, including all 
topics discussed under those general subjects (such as 
number theory).

• Those with accommodations remember to book with ADS.



Diffie-Hellman Security Idea

This class is being recorded

In Diffie-Hellman, Alice and Bob must perform modular 
exponentiation: Alice announces  and Bob 
announces  for secret a and b chosen by Alice and 
Bob respectively and not shared with each other or Eve.  Then 
they do another pair of modular exponentiations  and  to 
calculate the key.

A = ga mod p
B = gb mod p

Ba Ab

• Alice and Bob must compute modular exponentials, which 
can be done in polynomial time in the length of p, g.

Eve can break Diffie-Hellman if she can calculate the discrete log 
for (g,p): That is, if given y, she can find x such that .gx = y mod p

• So, for security, we need that calculating the discrete log is 
hard.

We are studying modular arithmetic to understand the difficulty 
of discrete log.



Group Theory

Definition: A group (G, *) is a set G of elements along with a 
binary operation  with the following properties:* : G × G → G

1. Closure:  when .
2. Associativity: , .
3. Identity:  such that .
4. Inverses:  such that 

.

g * h ∈ G g, h ∈ G
∀g, h, k ∈ G (g * h) * k = g * (h * k)

∃e ∈ G ∀g ∈ G, e * g = g * e = g
∀g ∈ G, ∃g−1 ∈ G

g * g−1 = g−1 * g = e
A subgroup H of G, written  is a subset of G which is also 
a group.  The order  of a finite group G is the number of 
elements.

H ≤ G
|G |

Lagrange’s Theorem: If H and G are finite groups with , 
then  divides .

H ≤ G
|H | |G |

This class is being recorded

A set S generates a group G if all elements of G can be written 
as products of elements of S.  A group that can be generated by 
just one element is cyclic.



Cyclic Subgroups of ℤ*N
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What are the possible orders of an element under modular 
exponentiation?

Let  and define .    is the cyclic 
subgroup of  generated by g.

g ∈ ℤ*N ⟨g⟩ = {ga ∈ ℤ*N} ⟨g⟩
ℤ*N

By Lagrange’s Theorem,  divides .  This tells 
us the possible values of the order of g: the factors of .

ord(g) = |⟨g⟩ | |ℤ*N |
|ℤ*N |

(Why is it a subgroup?  , so it is closed, and 
, so , so  has 

inverses since .)

gagb = ga+b

g ⋅ gord(g)−1 = 1 g−1 = gord(g)−1 ∈ ⟨g⟩ ⟨g⟩
(ga)−1 = (g−1)a

When N is prime, then everything smaller than N is 
relatively prime to it, so .|ℤ*N | = N − 1

What is  when N is not prime?|ℤ*N |



Euler Totient Function
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Let .  That is,  is equal to the number of positive 
integers  such that .  (Euler’s totient function)

φ(N) = ℤ*N φ(N)
j ≤ N gcd( j, N) = 1

Examples:

When p prime, φ(p) = p − 1
: 1 and 3 are relatively prime to 4.φ(4) = 2

: 1 and 5 are relatively prime to 6.φ(6) = 2

: 1, 3, 7, and 9 are relatively prime to 10.φ(10) = 4

: 1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, and 20 are 
relatively prime to 21.
φ(21) = 12

: 1, 5, 7, 11, 13, 17, 19, and 23 are relatively prime 
to 24.
φ(24) = 8



Totient for Product of Two Primes
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Let  for p and q prime, .  What is ?N = pq p < q φ(N)

List numbers not relatively prime to N:

Divisible by p: p, 2p, 3p, 4p, …, (q-1)p, pq = N

There are exactly q numbers on this list.

Divisible by q: q, 2q, 3q, 4q, …, (p-1)q, pq = N

But: Some numbers appear on both lists.

There are exactly p numbers on this list.

To appear on both lists, the number must be divisible by 
both p and q.  Only N qualifies.

Thus: # not relatively prime = .(q − 1) + (p − 1) + 1 = p + q − 1

φ(N) = N − (p + q − 1) = (p − 1)(q − 1)



General Formula for Totient
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Theorem: If  is the prime factorization of N (so every 

 is prime), then 

N = ∏
i

pei
i

pi

φ(N) = ∏
i

pei−1
i (pi − 1)

In general, numbers with fewer factors have larger values of 
.φ(N)



Euler-Fermat Theorem
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Putting together our deductions about the order of numbers for 
modular exponentiation with the rules for , we get the 
following theorem:

φ(N)

Euler-Fermat Theorem:  for any integers x, N 
with .

xφ(N) = 1 mod N
gcd(x, N) = 1

Corollary (Fermat’s Little Theorem):  for any 
integer x and any prime p.

xp = x mod p

Proof: Since the order divides ,|ℤ*N | = φ(N)

xφ(N) = (xord(x))φ(N)/ord(x) = 1φ(N)/ord(x) = 1 mod N

If we want to have elements of a large order, our best bet is to 
work modulo a prime.



Euler’s Theorem Examples

Example 1:
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N = 10, φ(10) = 4

, 34 = 81 = 1 mod 10 74 = 2401 = 1 mod 10

Example 2:

N = 21, φ(21) = 12

, 56 = 15,625 = 1 mod 21 116 = 1,771,561 = 1 mod 21
Actually, in , the highest order is 6.  But , so the 
Euler-Fermat theorem still applies.

ℤ*21 6 |12



Modulo a Prime
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But … the theorem only says that when p is prime, the order 
divides p-1, not that it is p-1.



Modulo a Prime
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But … the theorem only says that when p is prime, the order 
divides p-1, not that it is p-1.

71 = 7 mod 11
72 = 5 mod 11
73 = 2 mod 11
74 = 3 mod 11
75 = 10 mod 11
76 = 4 mod 11
77 = 6 mod 11
78 = 9 mod 11
79 = 8 mod 11
710 = 1 mod 11
ord(7) = 10

Recall the example from last time.  Mod 
11, it is actually the case that ord(7) = 10.  
This implies that  is cyclic, and 7 is a 
generator.

ℤ*11

Theorem: When p is prime,  is cyclic.ℤ*p



Modulo a Prime
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But … the theorem only says that when p is prime, the order 
divides p-1, not that it is p-1.

71 = 7 mod 11
72 = 5 mod 11
73 = 2 mod 11
74 = 3 mod 11
75 = 10 mod 11
76 = 4 mod 11
77 = 6 mod 11
78 = 9 mod 11
79 = 8 mod 11
710 = 1 mod 11
ord(7) = 10

Recall the example from last time.  Mod 
11, it is actually the case that ord(7) = 10.  
This implies that  is cyclic, and 7 is a 
generator.

ℤ*11

Theorem: When p is prime,  is cyclic.ℤ*p

By picking a large prime base, we could 
have a high order element … but how 
many elements actually have order p-1?



Distribution of Orders

Given prime p and generator  for , which  have 
order p-1 and which have a lower order?

g0 ℤ*p g ∈ ℤ*p
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Distribution of Orders

Given prime p and generator  for , which  have 
order p-1 and which have a lower order?

g0 ℤ*p g ∈ ℤ*p
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Suppose .  Theng = gj
0

gr = (gj
0)

r = gjr
0 = gr′ 

0 mod p

when  since .r′ = jr mod (p − 1) ord(g0) = p − 1

That is,  if .  r′ = 0 (p − 1) | jr



Distribution of Orders

Given prime p and generator  for , which  have 
order p-1 and which have a lower order?

g0 ℤ*p g ∈ ℤ*p
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Suppose .  Theng = gj
0

gr = (gj
0)

r = gjr
0 = gr′ 

0 mod p

when  since .r′ = jr mod (p − 1) ord(g0) = p − 1

That is,  if .  r′ = 0 (p − 1) | jr

If , then  only when .  
Therefore, if , .

gcd( j, p − 1) = 1 (p − 1) | jr (p − 1) |r
gcd( j, p − 1) = 1 ord(gj

0) = p − 1
Otherwise,  is smaller.  In particular, ord(gj

0)

ord(gj
0) =

p − 1
gcd( j, p − 1)



Order Distribution Example

71 = 7 mod 11
72 = 5 mod 11
73 = 2 mod 11
74 = 3 mod 11
75 = 10 mod 11
76 = 4 mod 11
77 = 6 mod 11
78 = 9 mod 11
79 = 8 mod 11
710 = 1 mod 11
ord(7) = 10

Let’s see how this works with p=11.

Since 1, 3, 7, and 9 are relatively prime 
to p-1 = 10, we conclude the possible 
generators of  are 7, 2, 6, and 8.ℤ*11
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We can also conclude that 5, 3, 4, and 9 
have order 5 since they are even 
powers of 7: e.g.,

35 = 243 mod 11 = 1 mod 11

And  has order 2:10 = 75 mod 11

102 = 100 mod 11 = 1 mod 11



Subgroups of ℤ*p
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The group  can therefore be generated by any of the 
 elements of the form  for .

ℤ*p
φ(p − 1) gj

0 gcd( j, p − 1) = 1

We can also consider subgroups of  generated by  for 
.

ℤ*p gj
0

gcd( j, p − 1) ≠ 1

In particular, the subgroup  has order .⟨gj
0⟩ (p − 1)/ gcd( j, p − 1)

For the  example, we get two non-trivial subgroups:ℤ*11

 of order 5⟨5⟩ = {1,3,4,5,9}

 of order 2.⟨10⟩ = {1,10}

There is a subgroup corresponding to any factor of p-1.



Other Groups
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The same arguments apply to any finite cyclic group G: There are 
 possible generators and other elements will generate 

cyclic subgroups whose order is a factor of .
φ( |G | )

|G |

Note that when  is prime, then all non-identity elements 
are generators of the group.  (And a group of prime order is 
automatically cyclic as well.)

|G |

Unfortunately, for any prime ,  is not 
prime, so we are left with the case that only some elements 
are generators.

p > 3 |ℤ*p | = p − 1

Also note that when N is not prime,  might not be cyclic, 
although it is always a group.

ℤ*N

For instance, in , all three non-zero elements 
3, 5, and 7 have order 2 and therefore only generate order 2 
subgroups.   is another example.

ℤ*8 = {1,3,5,7}

ℤ*21



Application to Diffie-Hellman

Alice Bob

secret a secret b
gb mod p

ga mod p

gagb
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(gb)a = gab (ga)b = gab

In order to have some hope that Diffie-Hellman is secure, we 
want:

• To pick a large prime p
• To have  large so it is not too hard to find 

elements with high order
• To actually pick a g with high order

φ(p − 1)



Diffie-Hellman with Groups

Alice Bob

secret a secret b
gb

ga

gagb
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(gb)a = gab (ga)b = gab

Diffie-Hellman also works when g is drawn from a group G.

Alice and Bob must first agree on the group G and the element 
g.  G is cyclic and .G = ⟨g⟩
Again, they can use standardized values for g and G.

Elliptic curves are common; they allow smaller groups than 
modular arithmetic.



Bad Primes for Discrete Log 

We need to make an additional constraint on the choice of 
prime p for Diffie-Hellman.  When p-1 is itself a product of small 
primes, there is a fast algorithm for discrete log (Pohlig-Hellman). 

The attack relies on the Chinese remainder theorem:
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Theorem: Let N = ab, with a and b relatively prime.  Given any 
pair of non-negative integers , with  and , 
there exists a unique non-negative integer  such that 

 and .  There is an efficient algorithm 
to compute x. 

(xa, xb) xa < a xb < b
x < N

x = xa mod a x = xb mod b

Algorithm: Using Euclid’s algorithm, compute X and Y such that 
.aX + bY = 1

Then .x = xbaX + xabY

Why? , so , so .bY = 1 − aX x = (xbX − xaX)a + xa x = xa mod a



Chinese Remainder Theorem

Example:

Suppose we want to find an x such that

x = 5 mod 14
x = 3 mod 5

We could apply Euclid’s algorithm to see that

3 * 5 − 1 * 14 = 1
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We then have

x = 5 * 15 − 3 * 14 = 33




