CMSC/Math 456: Cryptography (Fall 2022) Lecture 11 Daniel Gottesman

Problem 3a (on PS#4): N is now 465.

Regrade policy: Regrade requests should be submitted at most 1 week after both the solutions and the grades for the assignment have been released.

For Problem sets #1 and #2, you can still submit regrade requests until 1 week from today.

Midterm: Thursday, Oct. 20 (2 weeks from Thursday)

- In class
- Open book (including textbook), no electronic devices
- Will cover classical cryptographic, private key encryption, and public key encryption and key exchange, including all topics discussed under those general subjects (such as number theory).
- Those with accommodations remember to book with ADS.

Diffie-Hellman Security Idea

In Diffie-Hellman, Alice and Bob must perform modular exponentiation: Alice announces $A = g^a \mod p$ and Bob announces $B = g^b \mod p$ for secret a and b chosen by Alice and Bob respectively and not shared with each other or Eve. Then they do another pair of modular exponentiations B^a and A^b to calculate the key.

• Alice and Bob must compute modular exponentials, which can be done in polynomial time in the *length* of p, g.

Eve can break Diffie-Hellman if she can calculate the discrete log for (g,p):That is, if given y, she can find x such that $g^x = y \mod p$.

• So, for security, we need that calculating the discrete log is hard.

We are studying modular arithmetic to understand the difficulty of discrete log.

Group Theory

Definition: A group (G, *) is a set G of elements along with a binary operation $*: G \times G \to G$ with the following properties:

I. Closure: $g * h \in G$ when $g, h \in G$.

- **2.** Associativity: $\forall g, h, k \in G$, (g * h) * k = g * (h * k).
- 3. Identity: $\exists e \in G$ such that $\forall g \in G, e * g = g * e = g$.
- 4. Inverses: $\forall g \in G, \exists g^{-1} \in G$ such that $g * g^{-1} = g^{-1} * g = e$.

A subgroup H of G, written $H \leq G$ is a subset of G which is also a group. The order |G| of a finite group G is the number of elements.

A set S generates a group G if all elements of G can be written as products of elements of S. A group that can be generated by just one element is cyclic.

Lagrange's Theorem: If H and G are finite groups with $H \leq G$, then |H| divides |G|.

Cyclic Subgroups of \mathbb{Z}_{N}^{*}

What are the possible orders of an element under modular exponentiation?

Let $g \in \mathbb{Z}_N^*$ and define $\langle g \rangle = \{g^a \in \mathbb{Z}_N^*\}$. $\langle g \rangle$ is the cyclic subgroup of \mathbb{Z}_N^* generated by g.

(Why is it a subgroup? $g^a g^b = g^{a+b}$, so it is closed, and $g \cdot g^{\operatorname{ord}(g)-1} = 1$, so $g^{-1} = g^{\operatorname{ord}(g)-1} \in \langle g \rangle$, so $\langle g \rangle$ has inverses since $(g^a)^{-1} = (g^{-1})^a$.)

By Lagrange's Theorem, $\operatorname{ord}(g) = |\langle g \rangle|$ divides $|\mathbb{Z}_N^*|$. This tells us the possible values of the order of g: the factors of $|\mathbb{Z}_N^*|$.

When N is prime, then everything smaller than N is relatively prime to it, so $|\mathbb{Z}_N^*| = N - 1$.

What is $|\mathbb{Z}_N^*|$ when N is not prime?

Euler Totient Function

Let $\varphi(N) = \mathbb{Z}_N^*$. That is, $\varphi(N)$ is equal to the number of positive integers $j \leq N$ such that gcd(j, N) = 1. (Euler's totient function) Examples:

When p prime, $\varphi(p) = p - 1$

 $\varphi(4) = 2$: I and 3 are relatively prime to 4.

 $\varphi(6) = 2$: I and 5 are relatively prime to 6.

 $\varphi(10) = 4$: I, 3, 7, and 9 are relatively prime to 10.

 $\varphi(21) = 12$: 1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, and 20 are relatively prime to 21.

 $\varphi(24) = 8$: 1, 5, 7, 11, 13, 17, 19, and 23 are relatively prime to 24.

Totient for Product of Two Primes

Let N = pq for p and q prime, p < q. What is $\varphi(N)$?

List numbers *not* relatively prime to N:

Divisible by p: p, 2p, 3p, 4p, ..., (q-1)p, pq = N

There are exactly q numbers on this list.

Divisible by q: q, 2q, 3q, 4q, ..., (p-1)q, pq = N

There are exactly p numbers on this list.

But: Some numbers appear on both lists.

To appear on both lists, the number must be divisible by both p and q. Only N qualifies.

Thus: # not relatively prime = (q - 1) + (p - 1) + 1 = p + q - 1.

$$\varphi(N) = N - (p + q - 1) = (p - 1)(q - 1)$$

General Formula for Totient

Theorem: If $N = \prod_{i} p_i^{e_i}$ is the prime factorization of N (so every

 p_i is prime), then

$$\varphi(N) = \prod_{i} p_i^{e_i - 1}(p_i - 1)$$

In general, numbers with fewer factors have larger values of $\varphi(N)$.

Euler-Fermat Theorem

Putting together our deductions about the order of numbers for modular exponentiation with the rules for $\varphi(N)$, we get the following theorem:

Euler-Fermat Theorem: $x^{\varphi(N)} = 1 \mod N$ for any integers x, N with gcd(x, N) = 1.

Corollary (Fermat's Little Theorem): $x^p = x \mod p$ for any integer x and any prime p.

Proof: Since the order divides $|\mathbb{Z}_N^*| = \varphi(N)$, $x^{\varphi(N)} = (x^{\operatorname{ord}(x)})^{\varphi(N)/\operatorname{ord}(x)} = 1^{\varphi(N)/\operatorname{ord}(x)} = 1 \mod N$

If we want to have elements of a large order, our best bet is to work modulo a prime.

Euler's Theorem Examples

Example I: $N = 10, \varphi(10) = 4$ $3^4 = 81 = 1 \mod 10, 7^4 = 2401 = 1 \mod 10$

Example 2:

N = 21, $\varphi(21) = 12$ $5^6 = 15,625 = 1 \mod 21, 11^6 = 1,771,561 = 1 \mod 21$ Actually, in \mathbb{Z}_{21}^* , the highest order is 6. But 6 | 12, so the Euler-Fermat theorem still applies.

Modulo a Prime

But ... the theorem only says that when p is prime, the order divides p-1, not that it is p-1.

Modulo a Prime

But ... the theorem only says that when p is prime, the order divides p-1, not that it is p-1.

Recall the example from last time. Mod II, it is actually the case that ord(7) = 10. This implies that \mathbb{Z}_{11}^* is cyclic, and 7 is a generator.

Theorem: When **p** is prime, \mathbb{Z}_p^* is cyclic.

- $7^1 = 7 \mod 11$
- $7^2 = 5 \mod 11$
- $7^3 = 2 \mod 11$
- $7^4 = 3 \mod{11}$
- $7^5 = 10 \mod 11$
- $7^6 = 4 \mod{11}$
- $7^7 = 6 \mod{11}$
- $7^8 = 9 \mod{11}$
- $7^9 = 8 \mod 11$
- $7^{10} = 1 \mod 11$
- ord(7) = 10

Modulo a Prime

But ... the theorem only says that when p is prime, the order divides p-1, not that it is p-1.

Recall the example from last time. Mod II, it is actually the case that ord(7) = 10. This implies that \mathbb{Z}_{11}^* is cyclic, and 7 is a generator.

Theorem: When **p** is prime, \mathbb{Z}_p^* is cyclic.

By picking a large prime base, we could have a high order element ... but how many elements actually have order p-1?

 $7^3 = 2 \mod 11$ $7^4 = 3 \mod 11$ $7^5 = 10 \mod 11$ $7^6 = 4 \mod 11$ $7^7 = 6 \mod 11$

 $7^1 = 7 \mod 11$

 $7^2 = 5 \mod 11$

 $7^8 = 9 \mod{11}$

$$7^9 = 8 \mod 11$$

$$7^{10} = 1 \mod 11$$

ord(7) = 10

Distribution of Orders

Given prime p and generator g_0 for \mathbb{Z}_p^* , which $g \in \mathbb{Z}_p^*$ have order p-1 and which have a lower order?

Distribution of Orders

Given prime p and generator g_0 for \mathbb{Z}_p^* , which $g \in \mathbb{Z}_p^*$ have order p-1 and which have a lower order?

Suppose
$$g = g_0^j$$
. Then
 $g^r = (g_0^j)^r = g_0^{jr} = g_0^{r'} \mod p$
when $r' = jr \mod (p-1) \text{ since } \operatorname{ord}(g_0) = p - 1$.
That is, $r' = 0$ if $(p-1) | jr$.

Distribution of Orders

Given prime p and generator g_0 for \mathbb{Z}_p^* , which $g \in \mathbb{Z}_p^*$ have order p-1 and which have a lower order?

Suppose
$$g = g_0^j$$
. Then
 $g^r = (g_0^j)^r = g_0^{jr} = g_0^{r'} \mod p$
when $r' = jr \mod (p-1)$ since $\operatorname{ord}(g_0) = p - 1$.
That is, $r' = 0$ if $(p-1) | jr$.

If gcd(j, p - 1) = 1, then (p - 1) | jr only when (p - 1) | r. Therefore, if gcd(j, p - 1) = 1, $ord(g_0^j) = p - 1$.

Otherwise, $\operatorname{ord}(g_0^j)$ is smaller. In particular,

$$\operatorname{ord}(g_0^j) = \frac{p-1}{\gcd(j,p-1)}$$

Order Distribution Example

Let's see how this works with p=||.

Since 1, 3, 7, and 9 are relatively prime to p-1 = 10, we conclude the possible generators of \mathbb{Z}_{11}^* are 7, 2, 6, and 8.

We can also conclude that 5, 3, 4, and 9 have order 5 since they are even powers of 7: e.g.,

 $3^5 = 243 \mod 11 = 1 \mod 11$

And $10 = 7^5 \mod 11$ has order 2: $10^2 = 100 \mod 11 = 1 \mod 11$

- $7^1 = 7 \mod 11$
- $7^2 = 5 \mod 11$
- $7^3 = 2 \mod 11$
- $7^4 = 3 \mod{11}$
- $7^5 = 10 \mod 11$
- $7^6 = 4 \mod 11$
- $7^7 = 6 \mod{11}$
- $7^8 = 9 \mod{11}$
- $7^9 = 8 \mod 11$
- $7^{10} = 1 \mod 11$

$$ord(7) = 10$$

Subgroups of \mathbb{Z}_p^*

The group \mathbb{Z}_p^* can therefore be generated by any of the $\varphi(p-1)$ elements of the form g_0^j for gcd(j, p-1) = 1.

We can also consider subgroups of \mathbb{Z}_p^* generated by g_0^j for $gcd(j, p - 1) \neq 1$.

In particular, the subgroup $\langle g_0^j \rangle$ has order $(p-1)/\gcd(j,p-1)$.

For the \mathbb{Z}_{11}^* example, we get two non-trivial subgroups: $\langle 5 \rangle = \{1,3,4,5,9\}$ of order 5 $\langle 10 \rangle = \{1,10\}$ of order 2.

There is a subgroup corresponding to any factor of p-1.

Other Groups

The same arguments apply to any finite cyclic group G: There are $\varphi(|G|)$ possible generators and other elements will generate cyclic subgroups whose order is a factor of |G|.

Note that when |G| is prime, then *all* non-identity elements are generators of the group. (And a group of prime order is automatically cyclic as well.)

Unfortunately, for any prime p > 3, $|\mathbb{Z}_p^*| = p - 1$ is not prime, so we are left with the case that only some elements are generators.

Also note that when N is not prime, \mathbb{Z}_N^* might not be cyclic, although it is always a group.

For instance, in $\mathbb{Z}_{8}^{*} = \{1,3,5,7\}$, all three non-zero elements 3, 5, and 7 have order 2 and therefore only generate order 2 subgroups. \mathbb{Z}_{21}^{*} is another example.

Application to Diffie-Hellman

In order to have some hope that Diffie-Hellman is secure, we want:

- To pick a large prime p
- To have $\varphi(p-1)$ large so it is not too hard to find elements with high order
- To actually pick a g with high order

Diffie-Hellman with Groups

Diffie-Hellman also works when g is drawn from a group G.

Alice and Bob must first agree on the group G and the element g. G is cyclic and $G = \langle g \rangle$.

Again, they can use standardized values for g and G.

Elliptic curves are common; they allow smaller groups than modular arithmetic.

Bad Primes for Discrete Log

We need to make an additional constraint on the choice of prime p for Diffie-Hellman. When p-1 is itself a product of small primes, there is a fast algorithm for discrete log (Pohlig-Hellman).

The attack relies on the Chinese remainder theorem:

Theorem: Let N = ab, with a and b relatively prime. Given any pair of non-negative integers (x_a, x_b) , with $x_a < a$ and $x_b < b$, there exists a unique non-negative integer x < N such that $x = x_a \mod a$ and $x = x_b \mod b$. There is an efficient algorithm to compute x.

Algorithm: Using Euclid's algorithm, compute X and Y such that aX + bY = 1.

Then $x = x_b a X + x_a b Y$.

Why? bY = 1 - aX, so $x = (x_bX - x_aX)a + x_a$, so $x = x_a \mod a$.

Chinese Remainder Theorem

Example:

Suppose we want to find an x such that

 $x = 5 \mod 14$ $x = 3 \mod 5$

We could apply Euclid's algorithm to see that

3*5 - 1*14 = 1

We then have

x = 5 * 15 - 3 * 14 = 33