CMSC/Math 456:
raphy (Fall 2022)




Administrative

Problem 3a (on PS#4): N is now 465.

Regrade policy: Regrade requests should be submitted at most |

week after both the solutions and the grades for the assighnment
have been released.

For Problem sets #1 and #2, you can still submit regrade
requests until | week from today.

Midterm: Thursday, Oct. 20 (2 weeks from Thursday)

* In class

* Open book (including textbook), no electronic devices

* Will cover classical cryptographic, private key encryption,
and public key encryption and key exchange, including all
topics discussed under those general subjects (such as
number theory).

* Those with accommodations remember to book with ADS.

This class is being recorded



Diffie-Hellman Securit

In Diffie-Hellman, Alice and Bob must perform modular
exponentiation: Alice announces A = ¢“ mod p and Bob
announces B = gb mod p for secret a and b chosen by Alice and
Bob respectively and not shared with each other or Eve. Then
they do another pair of modular exponentiations B and A” to
calculate the key.

* Alice and Bob must compute modular exponentials, which
can be done in polynomial time in the length of p, g.

Eve can break Diffie-Hellman if she can calculate the discrete log
for (g,p): That is, if given y, she can find x such that g* = y mod p.

* So, for security, we need that calculating the discrete log is
hard.

We are studying modular arithmetic to understand the difficulty
of discrete log.
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Group Theory

Definition: A group (G, *) is a set G of elements along with a
binary operation * : G X G — G with the following properties:

|. Closure: g *h € G when g,h € G.

2. Associativity: Vg, h,k € G,(g*h) *k = g*(h* k).

3. Identity: de € G suchthat Vg € G,e* g =g ¥ e = g.

4. Inverses: Vg € G,3g™ ! € G such that

g*g =g *g=e.

A subgroup H of G, written i/ < (G is a subset of G which is also
a group. The order |G| of a finite group G is the number of
elements.
A set S generates a group G if all elements of G can be written

as products of elements of S. A group that can be generated by
just one element is cyclic.

Lagrange’s Theorem: If H and G are finite groups with H < G,
then | H| divides |G |.
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Cyclic Subgroups of Z*

What are the possible orders of an element under modular
exponentiation!?

Let ¢ € Z7 and define (g) = {g“ € Z3}. (g) is the cyclic
subgroup of Z generated by g.

(Why is it a subgroup? g“g” = g™’ so it is closed, and

g g = 1,50 g7 = g™ € (g), 50 (g) has
inverses since (g%)~! = (g7 1)%)

By Lagrange’s Theorem, ord(g) = | (g) | divides | Z5 | . This tells
us the possible values of the order of g: the factors of | Z7|.

When N is prime, then everything smaller than N is
relatively prime to it,so | Z5| = N — 1.

What is | Z3 | when N is not prime?
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Euler Totient Function

Let p(N) = Z;’\j. That is, (/N ) is equal to the number of positive
integers j < N such that gcd(j, N) = 1. (Euler’s totient function)

Examples:

When p prime, p(p) = p — 1
@(4) = 2: 1 and 3 are relatively prime to 4.

@(6) = 2: 1 and 5 are relatively prime to 6.

@(10) =4:1,3,7,and 9 are relatively prime to 10.

p2l)=12:1,2,4,58,10,11,13,16,17,19,and 20 are
relatively prime to 21.

p(24) = 8:1,5,7,11,13,17,19,and 23 are relatively prime
to 24.
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Totient for Product of Two Pri

Let N = pg for p and q prime, p < g. What is ¢(/N)?
List numbers not relatively prime to N:
Divisible by p: p, 2p, 3p,4p, ..., (q-1)p, pg = N
There are exactly g numbers on this list.

Divisible by q: q, 2q, 3q,4q, ..., (p-1)g, pg = N

There are exactly p numbers on this list.

But: Some numbers appear on both lists.

To appear on both lists, the number must be divisible by
both p and g. Only N qualifies.

Thus: # not relatively prime=(g— 1)+ (p—-1)+1=p+qg— 1.

(¢)=N—-(p+g-D=(p-Dig-D]
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General Formula for Totient

Theorem: If N = le.ei is the prime factorization of N (so every

p; is prime), then

o) = ]p (0= 1)

In general, numbers with fewer factors have larger values of

p(N).

This class is being recorded



Euler-Fermat Theorem

Putting together our deductions about the order of numbers for
modular exponentiation with the rules for ¢(/V), we get the
following theorem:

Euler-Fermat Theorem: x?"Y) = 1 mod N for any integers x, N
with gcd(x, N) = 1.

Corollary (Fermat’s Little Theorem): x” = x mod p for any
integer x and any prime p.

Proof: Since the order divides | Z;‘\jl = @(N),

xqa(N) — (xord(x))q)(N)/ord(x) — 1(p(N)/0rd(x) — 1 mod N

If we want to have elements of a large order, our best bet is to
work modulo a prime.
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Euler’s Theorem Examples

Example |:
N =10, p(10) = 4
3* =81 =1 mod 10,7* = 2401 = 1 mod 10

Example 2:
N =21,p(21) =12
56 =15,625=1mod 21,11°= 1,771,561 = 1 mod 21

Actually, in Z7, the highest order is 6. But 6|12, so the

Euler-Fermat theorem still applies.
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Modulo a Prime

But ... the theorem only says that when p is prime, the order
divides p-1, not that it is p-1.
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Modulo a Prime

But ... the theorem only says that when p is prime, the order
divides p-1, not that it is p-1.

1 o
Recall the example from last time. Mod 72 =/ moe.
| I, it is actually the case that ord(7) = |0. 7 =5mod 11
This implies that Z7 is cyclic,and 7 is a 73 — 2 mod 11
generator. 74 — 3 mod 11
(Theorem:When p is prime, Z7 is cyclic) 7 =10 mod 11
7% =4 mod 11
7" =6 mod 11
7% =9 mod 11
7° =8 mod 1
7' =1 mod 11
ord(7) = 10
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Modulo a Prime

But ... the theorem only says that when p is prime, the order
divides p-1, not that it is p-1.

1 . 1 4 -

Recall the example from last time. Mod 72 =/ moe.

| 1, it is actually the case that ord(7) = 10. 7 =5 mod 11

This implies that Z7 is cyclic,and 7 is a 7° =2 mod 11

generator. 74 — 3 mod 11
(Theorem:When p is prime, Z;f is cyclic) 7’ =10 mod 11

7° = 4 mod 11

By picking a large prime base, we could 7"=6 m0§.

have a high order element ... but how 7° =9 mod 11

many elements actually have order p-|? 79 — 8 mod 11
7' = 1 mod 11

ord(7) = 10
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Distribution of Orders

Given prime p and generator g, for Z7, which g € Z7 have
order p-| and which have a lower order?
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Distribution of Orders

Given prime p and generator g, for Z7, which g € Z7 have
order p-| and which have a lower order?

Suppose g = gé. Then
g =(g])' =g =g, mod p

when 7’ = jr mod (p — 1) since ord(gy) = p — 1.
Thatis,” =0if (p — 1)|jr.
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Distribution of Orders

Given prime p and generator g, for Z7, which g € Z7 have
order p-| and which have a lower order?

Suppose g = gé. Then
g =(g])' =g =g, mod p
when 7’ = jr mod (p — 1) since ord(gy) = p — 1.
Thatis,” =0if (p — 1)|jr.
If gcd(j,p — 1) = 1,then (p — 1)|jr only when (p — 1) | r.
Therefore, if gcd(j,p — 1) = 1,0rd(g)) = p — 1.

Otherwise, ord(gé) is smaller. In particular,

( . . 1 )
ord(g]) = ——
. ged(j,p—1)
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Order Distribution Example

Let’s see how this works with p=11. 7" ="7Tmod 11

2 ;g -

Since [, 3,7,and 9 are relatively prime 7m=9 mog

to p-1 = |10, we conclude the possible 77 =2mod 1.

generators of ZF are 7,2,6,and 8. 74 =3 mod 11
We can also conclude that 5, 3,4, and 9 7% =10 mod ‘-1

have order 5 since they are even 7°=4mod 1.

powers of /:e.g., 77 — 6 mod 1

3> =243 mod 11 = 1 mod 11 78 — 9 mod 1°

And 10 = 7° mod 11 has order 2: 7° =8 mod |

, 7% =1 mod 11
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Subgroups of Z;

The group Z7 can therefore be generated by any of the
@(p — 1) elements of the form gé for gcd(j,p—1) = 1.

We can also consider subgroups of Z* generated by gg for

In particular, the subgroup (gé) has order (p — 1)/ gcd(j,p — 1).

For the Z7, example, we get two non-trivial subgroups:
(5) =1{1,3,4,5,9} of order 5
(10) = {1,10} of order 2.

There is a subgroup corresponding to any factor of p-1.
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Other Groups

The same arguments apply to any finite cyclic group G:There are
@(| G|) possible generators and other elements will generate
cyclic subgroups whose order is a factor of |G |.

Note that when | G| is prime, then all non-identity elements
are generators of the group. (And a group of prime order is
automatically cyclic as well.)

Unfortunately, for any prime p > 3, | Z5| = p — 1 is not

prime, so we are left with the case that only some elements
are generators.

Also note that when N is not prime, Z]"\j might not be cyclic,
although it is always a group.

For instance, in Z;k = {1,3,5,7}, all three non-zero elements

3, 5,and 7 have order 2 and therefore only generate order 2
subgroups. Z7 is another example.
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Application to Diffie-Hellmz

secret a

In order to have some hope that Diffie-Hellman is secure, we

want:
* To pick a large prime p

* To have ¢(p — 1) large so it is not too hard to find
elements with high order
* To actually pick a g with high order
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Diffie-Hellman with Grou

Diffie-Hellman also works when g is drawn from a group G.

< secret a
OOO
O b
@ g |
<
o

O
&

Alice

Alice and Bob must first agree on the group G and the element
g. Gis cyclicand G = (g).

Again, they can use standardized values for g and G.

Elliptic curves are common; they allow smaller groups than
modular arithmetic.
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Bad Primes for Discrete

We need to make an additional constraint on the choice of
prime p for Diffie-Hellman. When p-| is itself a product of small
primes, there is a fast algorithm for discrete log (Pohlig-Hellman).

The attack relies on the Chinese remainder theorem:

Theorem: Let N = ab, with a and b relatively prime. Given any
pair of non-negative integers (x , x ), with x, < a and x,, < b,
there exists a unique non-negative integer x < /N such that

x = x, mod a and x = x;, mod b. There is an efficient algorithm
to compute x.

Algorithm: Using Euclid’s algorithm, compute X and Y such that
aX+bY = 1.

Then x = xaX + x bY.
Why! bY = 1 —aX,so x = (x, X — x,X)a + x,,so0 x = x, mod a.
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Chinese Remainder Theorem

Example:

Suppose we want to find an x such that

x =5 mod 14
x=3mod>5

We could apply Euclid’s algorithm to see that
3*5—-1*%14=1
We then have
x=5%15-3*14 =33
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