CMSC/Math 456: Cryptography (Fall 2022)
 Lecture II
 Daniel Gottesman

Administrative

Problem 3a (on PS\#4): N is now 465.
Regrade policy: Regrade requests should be submitted at most I week after both the solutions and the grades for the assignment have been released.
For Problem sets \#I and \#2, you can still submit regrade requests until I week from today.

Midterm:Thursday, Oct. 20 (2 weeks from Thursday)

- In class
- Open book (including textbook), no electronic devices
- Will cover classical cryptographic, private key encryption, and public key encryption and key exchange, including all topics discussed under those general subjects (such as number theory).
- Those with accommodations remember to book with ADS.

Diffie-Hellman Security Idea

In Diffie-Hellman, Alice and Bob must perform modular exponentiation:Alice announces $A=g^{a} \bmod p$ and Bob announces $B=g^{b} \bmod p$ for secret a and b chosen by Alice and Bob respectively and not shared with each other or Eve. Then they do another pair of modular exponentiations B^{a} and A^{b} to calculate the key.

- Alice and Bob must compute modular exponentials, which can be done in polynomial time in the length of p, g.

Eve can break Diffie-Hellman if she can calculate the discrete log for (g, P) : That is, if given y , she can find x such that $g^{x}=y \bmod p$.

- So, for security, we need that calculating the discrete log is hard.

We are studying modular arithmetic to understand the difficulty of discrete log.

Group Theory

Definition:A group $\left(G,{ }^{*}\right)$ is a set G of elements along with a binary operation *: $G \times G \rightarrow G$ with the following properties:
I. Closure: $g * h \in G$ when $g, h \in G$.
2. Associativity: $\forall g, h, k \in G,\left(g^{*} h\right) * k=g^{*}(h * k)$.
3. Identity: $\exists e \in G$ such that $\forall g \in G, e^{*} g=g * e=g$.
4. Inverses: $\forall g \in G, \exists g^{-1} \in G$ such that

$$
g * g^{-1}=g^{-1} * g=e
$$

A subgroup H of G , written $H \leq G$ is a subset of G which is also a group. The order $|G|$ of a finite group G is the number of elements.
A set S generates a group G if all elements of G can be written as products of elements of S . A group that can be generated by just one element is cyclic.
Lagrange's Theorem: If H and G are finite groups with $H \leq G$, then $|H|$ divides $|G|$.

This class is being recorded

Cyclic Subgroups of \mathbb{Z}_{N}^{*}

What are the possible orders of an element under modular exponentiation?

Let $g \in \mathbb{Z}_{N}^{*}$ and define $\langle g\rangle=\left\{g^{a} \in \mathbb{Z}_{N}^{*}\right\} .\langle g\rangle$ is the cyclic subgroup of \mathbb{Z}_{N}^{*} generated by g.
(Why is it a subgroup? $g^{a} g^{b}=g^{a+b}$, so it is closed, and $g \cdot g^{\operatorname{ord}(g)-1}=1$, so $g^{-1}=g^{\operatorname{ord}(g)-1} \in\langle g\rangle$, so $\langle g\rangle$ has inverses since $\left(g^{a}\right)^{-1}=\left(g^{-1}\right)^{a}$.)
By Lagrange's Theorem, ord $(g)=|\langle g\rangle|$ divides $\left|\mathbb{Z}_{N}^{*}\right|$. This tells us the possible values of the order of g : the factors of $\left|\mathbb{Z}_{N}^{*}\right|$.

When N is prime, then everything smaller than N is relatively prime to it , so $\left|\mathbb{Z}_{N}^{*}\right|=N-1$.
What is $\left|\mathbb{Z}_{N}^{*}\right|$ when N is not prime?

Euler Totient Function

Let $\varphi(N)=\mathbb{Z}_{N}^{*}$. That is, $\varphi(N)$ is equal to the number of positive integers $j \leq N$ such that $\operatorname{gcd}(j, N)=1$. (Euler's totient function)

Examples:

When P prime, $\varphi(p)=p-1$
$\varphi(4)=2$: I and 3 are relatively prime to 4 .
$\varphi(6)=2: I$ and 5 are relatively prime to 6.
$\varphi(10)=4: I, 3,7$, and 9 are relatively prime to $I 0$.
$\varphi(21)=12: I, 2,4,5,8, I 0, I I, I 3, I 6, I 7, I 9$, and 20 are relatively prime to 21 .
$\varphi(24)=8: I, 5,7, I I, I 3, I 7,19$, and 23 are relatively prime to 24 .

Totient for Product of Two Primes

Let $N=p q$ for p and q prime, $p<q$. What is $\varphi(N)$?
List numbers not relatively prime to N :
Divisible by p: p, 2p, 3p, 4p, ..., (q-I)p, pq = N
There are exactly q numbers on this list.
Divisible by q: q, 2q, 3q, 4q, ..., (p-I)q, pq $=N$
There are exactly p numbers on this list.
But: Some numbers appear on both lists.
To appear on both lists, the number must be divisible by both p and q. Only N qualifies.
Thus: \# not relatively prime $=(q-1)+(p-1)+1=p+q-1$.

$$
\varphi(N)=N-(p+q-1)=(p-1)(q-1)
$$

This class is being recorded

General Formula for Totient

Theorem: If $N=\prod p_{i}^{e_{i}}$ is the prime factorization of N (so every
p_{i} is prime), then

$$
\varphi(N)=\prod_{i} p_{i}^{e_{i}-1}\left(p_{i}-1\right)
$$

In general, numbers with fewer factors have larger values of $\varphi(N)$.

Euler-Fermat Theorem

Putting together our deductions about the order of numbers for modular exponentiation with the rules for $\varphi(N)$, we get the following theorem:

Euler-Fermat Theorem: $x^{\varphi(N)}=1 \bmod N$ for any integers \times, N with $\operatorname{gcd}(x, N)=1$.

Corollary (Fermat's Little Theorem): $x^{p}=x \bmod p$ for any integer x and any prime p.

Proof: Since the order divides $\left|\mathbb{Z}_{N}^{*}\right|=\varphi(N)$,

$$
x^{\varphi(N)}=\left(x^{\operatorname{ord}(x)}\right)^{\varphi(N) / \operatorname{ord}(x)}=1^{\varphi(N) / \operatorname{ord}(x)}=1 \bmod N
$$

If we want to have elements of a large order, our best bet is to work modulo a prime.

Euler's Theorem Examples

Example I:

$$
\begin{aligned}
& \mathrm{N}=10, \varphi(10)=4 \\
& 3^{4}=81=1 \bmod 10,7^{4}=2401=1 \bmod 10
\end{aligned}
$$

Example 2:
$\mathrm{N}=2 \mathrm{I}, \varphi(21)=12$
$5^{6}=15,625=1 \bmod 21,11^{6}=1,771,561=1 \bmod 21$
Actually, in \mathbb{Z}_{21}^{*}, the highest order is 6 . But $6 \mid 12$, so the Euler-Fermat theorem still applies.

Modulo a Prime

But ... the theorem only says that when p is prime, the order divides $\mathrm{p}-\mathrm{I}$, not that it is $\mathrm{p}-\mathrm{l}$.

Modulo a Prime

But ... the theorem only says that when p is prime, the order divides $\mathrm{p}-\mathrm{I}$, not that it is $\mathrm{p}-\mathrm{I}$.

Recall the example from last time. Mod $I I$, it is actually the case that ord $(7)=10$. This implies that \mathbb{Z}_{11}^{*} is cyclic, and 7 is a generator.

$$
\begin{aligned}
& 7^{1}=7 \bmod 11 \\
& 7^{2}=5 \bmod 11 \\
& 7^{3}=2 \bmod 11 \\
& 7^{4}=3 \bmod 11 \\
& 7^{5}=10 \bmod 11 \\
& 7^{6}=4 \bmod 11 \\
& 7^{7}=6 \bmod 11 \\
& 7^{8}=9 \bmod 11 \\
& 7^{9}=8 \bmod 11 \\
& 7^{10}=1 \bmod 11 \\
& \operatorname{crd}(7)=10
\end{aligned}
$$

Modulo a Prime

But ... the theorem only says that when p is prime, the order divides $\mathrm{p}-\mathrm{I}$, not that it is $\mathrm{p}-\mathrm{I}$.

Recall the example from last time. Mod $I I$, it is actually the case that ord $(7)=10$. This implies that \mathbb{Z}_{11}^{*} is cyclic, and 7 is a generator.

$$
\begin{aligned}
& 7^{1}=7 \bmod 11 \\
& 7^{2}=5 \bmod 11 \\
& 7^{3}=2 \bmod 11 \\
& 7^{4}=3 \bmod 11 \\
& 7^{5}=10 \bmod 11 \\
& 7^{6}=4 \bmod 11 \\
& 7^{7}=6 \bmod 11 \\
& 7^{8}=9 \bmod 11 \\
& 7^{9}=8 \bmod 11 \\
& 7^{10}=1 \bmod 11 \\
& \operatorname{crd}(7)=10
\end{aligned}
$$

Distribution of Orders

Given prime p and generator g_{0} for \mathbb{Z}_{p}^{*}, which $g \in \mathbb{Z}_{p}^{*}$ have order p -I and which have a lower order?

Distribution of Orders

Given prime p and generator g_{0} for \mathbb{Z}_{p}^{*}, which $g \in \mathbb{Z}_{p}^{*}$ have order p -I and which have a lower order?

Suppose $g=g_{0}^{j}$. Then

$$
g^{r}=\left(g_{0}^{j}\right)^{r}=g_{0}^{j r}=g_{0}^{r^{\prime}} \bmod p
$$

when $r^{\prime}=j r \bmod (p-1)$ since $\operatorname{ord}\left(g_{0}\right)=p-1$.
That is, $r^{\prime}=0$ if $(p-1) \mid j r$.

Distribution of Orders

Given prime p and generator g_{0} for \mathbb{Z}_{p}^{*}, which $g \in \mathbb{Z}_{p}^{*}$ have order p -I and which have a lower order?

Suppose $g=g_{0}^{j}$. Then

$$
g^{r}=\left(g_{0}^{j}\right)^{r}=g_{0}^{j r}=g_{0}^{r^{\prime}} \bmod p
$$

when $r^{\prime}=j r \bmod (p-1)$ since $\operatorname{ord}\left(g_{0}\right)=p-1$.
That is, $r^{\prime}=0$ if $(p-1) \mid j r$.
If $\operatorname{gcd}(j, p-1)=1$, then $(p-1) \mid j r$ only when $(p-1) \mid r$.
Therefore, if $\operatorname{gcd}(j, p-1)=1, \operatorname{ord}\left(g_{0}^{j}\right)=p-1$.
Otherwise, $\operatorname{ord}\left(g_{0}^{j}\right)$ is smaller. In particular,

$$
\operatorname{ord}\left(g_{0}^{j}\right)=\frac{p-1}{\operatorname{gcd}(j, p-1)}
$$

This class is being recorded

Order Distribution Example

Let's see how this works with $p=\|$.
Since I, 3,7 , and 9 are relatively prime to p - $\mathrm{I}=10$, we conclude the possible generators of \mathbb{Z}_{11}^{*} are $7,2,6$, and 8 .

We can also conclude that $5,3,4$, and 9 have order 5 since they are even powers of 7: e.g.,

$$
3^{5}=243 \bmod 11=1 \bmod 11
$$

And $10=7^{5} \bmod 11$ has order 2:

$$
10^{2}=100 \bmod 11=1 \bmod 11
$$

$7^{1}=7 \bmod 11$
$7^{2}=5 \bmod 11$
$7^{3}=2 \bmod 11$
$7^{4}=3 \bmod 11$
$7^{5}=10 \bmod 11$
$7^{6}=4 \bmod 11$
$7^{7}=6 \bmod 11$
$7^{8}=9 \bmod 11$
$7^{9}=8 \bmod 11$
$7^{10}=1 \bmod 11$
ord(7) $=10$

Subgroups of \mathbb{Z}_{p}^{*}

The group \mathbb{Z}_{p}^{*} can therefore be generated by any of the $\varphi(p-1)$ elements of the form g_{0}^{j} for $\operatorname{gcd}(j, p-1)=1$.

We can also consider subgroups of \mathbb{Z}_{p}^{*} generated by g_{0}^{j} for $\operatorname{gcd}(j, p-1) \neq 1$.

In particular, the subgroup $\left\langle g_{0}^{j}\right\rangle$ has order $(p-1) / \operatorname{gcd}(j, p-1)$.
For the \mathbb{Z}_{11}^{*} example, we get two non-trivial subgroups:

$$
\begin{aligned}
& \langle 5\rangle=\{1,3,4,5,9\} \text { of order } 5 \\
& \langle 10\rangle=\{1,10\} \text { of order } 2 .
\end{aligned}
$$

There is a subgroup corresponding to any factor of $\mathrm{p}-\mathrm{I}$.

Other Groups

The same arguments apply to any finite cyclic group G:There are $\varphi(|G|)$ possible generators and other elements will generate cyclic subgroups whose order is a factor of $|G|$.

Note that when $|G|$ is prime, then all non-identity elements are generators of the group. (And a group of prime order is automatically cyclic as well.)
Unfortunately, for any prime $p>3,\left|\mathbb{Z}_{p}^{*}\right|=p-1$ is not prime, so we are left with the case that only some elements are generators.

Also note that when N is not prime, \mathbb{Z}_{N}^{*} might not be cyclic, although it is always a group.

For instance, in $\mathbb{Z}_{8}^{*}=\{1,3,5,7\}$, all three non-zero elements 3,5 , and 7 have order 2 and therefore only generate order 2 subgroups. \mathbb{Z}_{21}^{*} is another example.

Application to Diffie-Hellman

In order to have some hope that Diffie-Hellman is secure, we want:

- To pick a large prime p
- To have $\varphi(p-1)$ large so it is not too hard to find elements with high order
- To actually pick a g with high order

Diffie-Hellman with Groups

Diffie-Hellman also works when g is drawn from a group G .

Alice and Bob must first agree on the group G and the element g. G is cyclic and $G=\langle g\rangle$.

Again, they can use standardized values for g and G.
Elliptic curves are common; they allow smaller groups than modular arithmetic.

This class is being recorded

Bad Primes for Discrete Log

We need to make an additional constraint on the choice of prime p for Diffie-Hellman. When p-I is itself a product of small primes, there is a fast algorithm for discrete log (Pohlig-Hellman).

The attack relies on the Chinese remainder theorem:
Theorem: Let $\mathrm{N}=\mathrm{ab}$, with a and b relatively prime. Given any pair of non-negative integers (x_{a}, x_{b}), with $x_{a}<a$ and $x_{b}<b$, there exists a unique non-negative integer $x<N$ such that $x=x_{a} \bmod a$ and $x=x_{b} \bmod b$. There is an efficient algorithm to compute x .

Algorithm: Using Euclid's algorithm, compute X and Y such that $a X+b Y=1$.

Then $x=x_{b} a X+x_{a} b Y$.
Why? bY $=1-a X$, so $x=\left(x_{b} X-x_{a} X\right) a+x_{a}$, so $x=x_{a} \bmod a$.

Chinese Remainder Theorem

Example:

Suppose we want to find an x such that

$$
\begin{aligned}
& x=5 \bmod 14 \\
& x=3 \bmod 5
\end{aligned}
$$

We could apply Euclid's algorithm to see that

$$
3 * 5-1 * 14=1
$$

We then have

$$
x=5 * 15-3 * 14=33
$$

