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Administrative

This class is being recorded

Midterm: Thursday, Oct. 20 (2 weeks from today)

• In class
• Open book (including textbook), no electronic devices
• Will cover classical cryptographic, private key encryption, 

and public key encryption and key exchange, including all 
topics discussed under those general subjects (such as 
number theory).

• Those with accommodations remember to book with ADS.

Problem set #4 due, Solution set #3 out soon, Problem set #5 
available.



About Modular Arithmetic
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When you are thinking about modular arithmetic, you should be 
thinking of this as a separate arithmetic system than integer 
arithmetic that simply happens to agree with integer arithmetic 
sometimes.

In computer science terms, modular arithmetic is working 
with a different type than integer arithmetic.  When an 
equation has a “mod N” label, that is a sign that you are 
working with modular type, not integer type.

You can convert back and forth between modular type and 
integer type by taking advantage of the fact that they agree for 
numbers less than N, but you should bear in mind which you are 
working with.



Chinese Remainder Theorem
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Chinese Remainder Theorem: Let N = ab, with a and b relatively 
prime.  Given any pair of non-negative integers , with 

 and , there exists a unique non-negative integer 
 such that  and .  There is an 

efficient algorithm to compute x. 

(xa, xb)
xa < a xb < b
x < N x = xa mod a x = xb mod b

1. Using Euclid’s algorithm, compute X and Y such that 
.aX + bY = 1

2. Let .x = xbaX + xabY

Why does this algorithm work?

Algorithm: 

, so , so .bY = 1 − aX x = (xbX − xaX)a + xa x = xa mod a



Chinese Remainder Thm Example

Example:

Suppose we want to find an x such that

x = 5 mod 14 = xb mod b
x = 3 mod 5 = xa mod a

We apply Euclid’s algorithm to see that

3 * 5 − 1 * 14 = 1
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We then have

x = 5 * 15 − 3 * 14 = 33

We thus have aX = 15 and bY = -14.



Solving Discrete Log

Suppose you are given p, g, with p-1 a product of small primes.  
You are given y and wish to find x such that .gx = y mod p
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Solving Discrete Log

Suppose you are given p, g, with p-1 a product of small primes.  
You are given y and wish to find x such that .gx = y mod p

If , calculate  for all i.p − 1 = ∏
i

pi yi = y(p−1)/pi mod p
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Solving Discrete Log

Suppose you are given p, g, with p-1 a product of small primes.  
You are given y and wish to find x such that .gx = y mod p

If , calculate  for all i.p − 1 = ∏
i

pi yi = y(p−1)/pi mod p
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Now, .  But  has 
only order  in , so we can easily check all powers to find an 

 such that .

(g(p−1)/pi)x = (gx)(p−1)/pi = yi mod p gi = g(p−1)/pi

pi ℤ*p
xi gxi

i = yi mod p



Solving Discrete Log

Suppose you are given p, g, with p-1 a product of small primes.  
You are given y and wish to find x such that .gx = y mod p

If , calculate  for all i.p − 1 = ∏
i

pi yi = y(p−1)/pi mod p
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Now, .  But  has 
only order  in , so we can easily check all powers to find an 

 such that .

(g(p−1)/pi)x = (gx)(p−1)/pi = yi mod p gi = g(p−1)/pi

pi ℤ*p
xi gxi

i = yi mod p

Since  has order ,  whenevergi pi gx
i = gxi

i mod p
x = xi mod pi

we use the Chinese remainder theorem in order to find such an 
x.  Then .  (This follows because the x given by the 
Chinese remainder theorem is unique.)

y = gx



Discrete Log Example

Example: g = 65, p = 71, so .p − 1 = 2 ⋅ 5 ⋅ 7
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Given y = 54, what is x such that ?65x = 54 mod 71

Calculate  and compare to .5410 = 1 mod 71 20x0 mod 71

6510 = 20 mod 71

x0 = 0 mod 7

Calculate  and compare to .5414 = 25 mod 71 5x1 mod 71

6514 = 5 mod 71 6535 = 70 mod 71

x1 = 2 mod 5

Calculate  and compare to .5435 = 1 mod 71 70x1 mod 71
x2 = 0 mod 2

, x = 0 mod 14 x = 2 mod 5
x = 15 ⋅ 0 − 14 ⋅ 2 = − 28 = 42 mod 70

6542 = 54 mod 71

Formula for Chinese 
remainder theorem



Safe Primes

So for Diffie-Hellman to be secure, we need to find a prime base 
p such that p-1 has at least one large factor, and we also need to 
be able to find g with large order mod p.
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We will look for a prime of the form , where r is 
small (e.g., r=2) and q is also prime.  This guarantees a large 
prime factor for p-1.

p = rq + 1

With a p of this form, , so we can easily find an 
element g of order q with the following procedure:

p − 1 = rq

1. Choose random .
2. Let .
3. Repeat until .

x ∈ ℤ*p
g = xr mod p

g ≠ 1

Steps 1 and 2 generate a random element of the order q cyclic 
subgroup of .  Since q is prime, all elements of that subgroup 
have order q except for 1.

ℤ*p



Finding Primes
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How can we find a prime, let alone a prime of a specific form?

1. Choose a random number p of the desired length.
2. Check that p is prime.
3. Check that (p-1)/r is prime.
4. Repeat until both p and (p-1)/r are prime.

Remarkably, this works.  But there are two pieces needed to 
make it work:

• We need to be sure that primes are sufficiently 
common that we can find a prime in a reasonable time.

• We need an efficient algorithm to check that a number 
is prime.

For secure Diffie-Hellman, we will need p that is at least 
thousands of bits long, so efficiency is important.



How Common Are Primes?
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What do we expect?

2 3 5 7 11 13 17 19 23 29 31 37 41

Primes get rarer as the numbers get larger, but only slowly.



How Common Are Primes?
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What do we expect?

2 3 5 7 11 13 17 19 23 29 31 37 41

Primes get rarer as the numbers get larger, but only slowly.

The probability that a random s-bit number is prime is about 1/s.

Prime Number Theorem: Let  be the number of primes less 
than or equal to n.  Then

π(n)

π(n) ≈ n /ln n



How Common Are Primes?
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What do we expect?

2 3 5 7 11 13 17 19 23 29 31 37 41

Primes get rarer as the numbers get larger, but only slowly.

The probability that a random s-bit number is prime is about 1/s.

Prime Number Theorem: Let  be the number of primes less 
than or equal to n.  Then

π(n)

π(n) ≈ n /ln n

Therefore, if we choose s-bit numbers at random, we find 
a prime after O(s) tries, which is efficient.



Testing Primes

We also need a method to test for primes: Given N, is N prime?
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Fermat’s Little Theorem states that, if N is prime, then

xN = x mod N

for all x.

This suggests the following algorithm:

1. Choose random x
2. Calculate 
3. If , end the loop and return: Composite
4. Repeat steps 1-3 a number of times
5. If we are still going, return: Prime

y = xN mod N
y ≠ x

Vote: Does this algorithm work?  (Yes/No) Answer: No



Pseudoprimes
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Unfortunately, there are some composite numbers N such that

xN = x mod N

for all x.  These are called pseudoprimes or Carmichael numbers.

The smallest one is 561.  They seem to be rarer than prime 
numbers, but it is not clear if they are sufficiently rare that 
we can neglect the probability of choosing one if we choose 
N at random.

(Carmichael numbers fail the test  when x is 
not relatively prime to N.  Unfortunately, it is possible that only a 
small fraction of possible x’s share a common factor with N.)

xN−1 = 1 mod N



Miller-Rabin Primality Test

This class is being recorded

Some modifications are needed to make the previous algorithm 
work.  

The Miller-Rabin primality test is a probabilistic test but one that 
works (except with negligible probability) for all N, including 
pseudoprimes.

It takes advantage of the fact that if N is composite, then 
exists some a such that  but .a ≠ ± 1 mod N a2 = 1 mod N

E.g., for N = 561, .1882 = 1 mod 561

This follows from the Chinese remainder theorem:

If , there is a solution to N = uv
a = − 1 mod u
a = 1 mod v

which must satisfy the desired two conditions.




