CMSC/Math 456:
raphy (Fall 2022)




Administrative

There have been multiple replacements to fix errors in problem
set #5. Make sure you have the latest version. Also, please do
not use a brute-force approach to problem |I.

Midterm: Thursday, Oct. 20 (1.5 weeks from today)

* In class

* Open book (including textbook), no electronic devices

* Will cover material through Diffie-Hellman and El Gamal,
but not RSA.

* Those with accommodations remember to book with ADS.

Tuesday, Oct. |18 | will review a few (probably I-3) selected topics
from the first half of the class. | will create a poll on Piazza as to
which topics people would like to see reviewed.

This class is being recorded



Choosing g and p for Diffie-He

secret a

* Choose random p until we find one such that p is prime
and p-| = rq, for small r and prime q.
» Choose g € Z7 with high order.

* Or use standard values for g and p.

Is this secure!?
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Hardness of Discrete Lo

In order to talk about computational hardness of discrete log, we
need to consider a family of instances of increasing size.
(Remember we are defining hardness asymptotically.)

/Definition: Given a security parameter s, let p. = rg,+ | be an s- )
bit long prime with ¢, also prime,and let g, € Z7 be an element

of order ¢g.. We say that discrete log for (p,, g.) is worst-case
hard if there is no polynomial time algorithm & such that for all

W € (&) A (y) = x with y = g& mod p;. )

Vote: If we have a family (p,, g.) such that discrete log for (p,, g.)

is worst-case hard, does this suffice to prove the security of
Diffie-Hellman? (Yes/No/No one knows)
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Hardness of Discrete Log

In order to talk about computational hardness of discrete log, we
need to consider a family of instances of increasing size.
(Remember we are defining hardness asymptotically.)

(Definition: Given a security parameter s,let p. = rg. + 1 be an s- )
bit long prime with ¢, also prime,and let g, € Z7 be an element

of order ¢g.. We say that discrete log for (p,, g.) is worst-case
hard if there is no polynomial time algorithm & such that for all

W € (&) A (y) = x with y = g& mod p;. )

Vote: If we have a family (p,, g.) such that discrete log for (p,, g.)

is worst-case hard, does this suffice to prove the security of
Diffie-Hellman? (Yes/No/No one knows) Unknown

One possible problem is that Alice and Bob are choosing random
a and b, which might not be the hardest examples.
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Discrete Log Average Case

Try again:

6eﬁnition: Given a security parameter s,let p. = rg, + | be an s)
bit long prime with ¢, also prime,and let g, € Z7 be an element

of order g.. We say that discrete log for (p., g.) is average-case
hard if for any polynomial time algorithm <, for random

= ’
y <gS> Pr(<f(y) succeeds) < e(s)

for e(s) a negligible function, where we say </(y) succeeds if
QZ[ (v) = x with y = g7 mod p.. y
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Discrete Log Average Case

Try again:

6eﬁnition: Given a security parameter s,let p. = rg, + | be an s)
bit long prime with ¢, also prime,and let g, € Z7 be an element

of order g.. We say that discrete log for (p., g.) is average-case
hard if for any polynomial time algorithm &/, for random

= ’
y <gS> Pr(<f(y) succeeds) < e(s)

for e(s) a negligible function, where we say </(y) succeeds if
A (y) = x with y = g7 mod p..
(ZO) y =& Ps y

However, this isn’t actually the problem. It turns out that if
discrete log is average-case hard, it is worst-case hard. (This is

known as random self-reducibility.)
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Discrete Log Average Case

Try again:

6eﬁnition: Given a security parameter s,let p. = rg, + | be an s)
bit long prime with ¢, also prime,and let g, € Z7 be an element

of order g.. We say that discrete log for (p., g.) is average-case
hard if for any polynomial time algorithm &/, for random

= ’
y <gS> Pr(<f(y) succeeds) < e(s)

for e(s) a negligible function, where we say </(y) succeeds if
A (y) = x with y = g7 mod p..
(ZO) y =& Ps y

However, this isn’t actually the problem. It turns out that if
discrete log is average-case hard, it is worst-case hard. (This is

known as random self-reducibility.)

But what does it mean for Diffie-Hellman to be secure?
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Reminder: General Key Ex

O
OO
&b
Lo

O

f’ g’ h’ h’ f(a’)’ g(b)
LN
o Attack

 h(ag(b) = W(f(a).b) )

O
Eve

This class is being recorded



Security Definition for

Definition: Consider a key exchange protocol I1. The transcript
T(I1) for the protocol is a full record of all public information
announced during a run of the protocol. Suppose the protocol is
run generating the key k and let k' be a uniformly randomly
generated key. Then I1 is secure in the presence of an
eavesdropper if for all attacks </ with a |-bit output and taking
as inputs a transcript 7(I1) and a key k or I,

| Pr(/(T(I1), k) = 1) = Pr(A(T(1), k') = 1) | < e(s)

with e(s) negligible and the probabilities averaged over k’ and
over the randomness of &/ and I1.

@ x = (T(I1), k or k)
<

Alj < if 527()6) =1
Ice K if o(x) =0
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Why This Definition?

The definition says that the key generated by Alice and Bob
looks the same to Eve as a random key, even when Eve has
access to Alice and Bob’s transcript.

* It is similar to the definition of security for a pseudorandom
generator and for EAV-secure encryption. This means the key

generated can be used the same way, e.g., in a pseudo one-time
pad.

* In particular, we can prove a similar reduction to that for
pseudorandom generators: Define a pseudo one-time pad
protocol 11, which uses a key k, generated with the key
exchange protocol. If Eve has an attack against 11, then Eve has
an attack against the key exchange protocol.
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Choosing a Base

Once we have a modulus p = rg + 1, with p and g both prime
and r small (e.g., r=2), the next step is to find a base g.

We want to pick g to have large order. Let us specialize to r=2.
Then the factors of p-1 are |, 2, q,and 2q. These are the possible
orders for g. Obviously we shouldn’t choose g with order 2,
since then g“ would either be g or |, which can be easily solved.

Vote: Do we prefer order q or order 2q? Or does it not
matter?

This class is being recorded



Base of Order 2q

Suppose we choose g with order 2q,so g%¢ = 1 mod p, but
g4 # 1 mod p.

In this case, g generates the whole group of Z:*, which has an
order q subgroup consisting of elements g for integer i.

Notice: Eve can deduce something about a: Given A = ¢“ mod p,
Eve can tell if A is in the order q subgroup or not.

How!?
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Base of Order 2q

Suppose we choose g with order 2q,so g%¢ = 1 mod p, but
g9 # 1 mod p.

In this case, g generates the whole group of Z:*, which has an
order q subgroup consisting of elements g for integer i.

Notice: Eve can deduce something about a: Given A = ¢“ mod p,
Eve can tell if A is in the order q subgroup or not.

How! Calculate A? mod p and see ifitis I.
A has order q iff a is even. Similarly, B has order q iff b is even.

The final key k = g%” mod p has order q iff either a or b is even,
which happens iff A or B is order q.

Eve can deduce one bit of information about the key
k.She can use this to distinguish k from random k.

This class is being recorded



Picking an Element of Ord

This means it is better to use a base which has order q.

How can we choose an element of order q?

» Pick a random element /1 € Z7
* Let g = /” (or more generally, g = /")
* If g = 1 try again

This generates a random element of order qin Z7.

We want to pick an element of prime order to avoid leaking any
information about the key. This is why we need to pick a prime p
of this specific form to make Diffie-Hellman secure.
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Diffie-Hellman and Di

Proposition: If Diffie-Hellman is a secure key exchange protocol
using modulus and base (p., g.), then the discrete log problem is

average-case hard for (p., g.).

Proof: By a reduction from the Diffie-Hellman decision problem
to discrete log.

If we have an algorithm </(y) which succeeds in solving discrete
log for (p,, g,) with non-negligible probability (for any y), we can
use it to create an algorithm to find k in Diffie-Hellman using
(p,, &,), also with non-negligible probability.

HW#5, problem 2b asks you to do this, essentially.

If you know the value of k implied by the transcript of Diffie-
Hellman, you can easily distinguish k from random I<'.

Therefore, if Diffie-Hellman is hard, discrete log is also hard.
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Hardness of Diffie-Hellmar

The reduction shows that discrete log is at least as hard as

Diffie-Hellman. But can we show that Diffie-Hellman is exactly
as hard as discrete log!?

No one knows how to do this.

We would want to reduce discrete log to Diffie-Hellman. That is,

given an attack </ against Diffie-Hellman, use it to break discrete
log.

The issue is that given A and B, there might be a way to find k,

or just to distinguish k from random k' without learning much
about a or b. Maybe. We don’t know.

Why do we care!?

* Because discrete log is harder; it is more likely that is genuinely

hard, so it is better to base security on that (a weaker assumption).

* Discrete log is a cleaner problem, easier to reuse in other
cryptosystems.
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Algorithms for Discrete Lc

In practice, the best known algorithms for breaking Diffie-
Hellman work by breaking discrete log.

* For poor choices of p and/or g, there are good algorithms
(such as the Pohlig-Hellman algorithm we saw when p-1 is
a product of small primes).

e For general Z;f,the number field sieve runs in time

20((log p)""(loglog p)*™) (apparently). This is sub-exponential.

* No sub-exponential algorithm for Diffie-Hellman over
elliptic curves is known.

* Except: A quantum computer can efficiently break discrete
log over any abelian group, including elliptic curves.

Recommended key lengths:

» Over Z7: use p of length 2048 bits or longer.

* Elliptic curves key length: 224 bits or higher.
* But don’t use either if concerned about quantum attacks.
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Another Attack on Diffie-He
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Man-in-the-Middle Atta

Alice Eve Bob

In 2 man-in-the-middle attack, Eve intercepts all communications
between Alice and Bob and replaces them with messages of her
choice. In Diffie-Hellman as we’ve discussed it,Alice and Bob
have no way to fight this attack and Eve can read all their
messages.

Alice and Bob need to authenticate their messages.
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