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Administrative

This class is being recorded

Midterm: Thursday, Oct. 20 (1.5 weeks from today)

• In class
• Open book (including textbook), no electronic devices
• Will cover material through Diffie-Hellman and El Gamal, 

but not RSA.
• Those with accommodations remember to book with ADS.

There have been multiple replacements to fix errors in problem 
set #5.  Make sure you have the latest version.  Also, please do 
not use a brute-force approach to problem 1.

Tuesday, Oct. 18 I will review a few (probably 1-3) selected topics 
from the first half of the class.  I will create a poll on Piazza as to 
which topics people would like to see reviewed.



Choosing g and p for Diffie-Hellman

Alice Bob

secret a secret b
gb mod p

ga mod p

gagb

This class is being recorded

(gb)a = gab (ga)b = gab

• Choose random p until we find one such that p is prime 
and p-1 = rq, for small r and prime q.

• Choose  with high order.
• Or use standard values for g and p.

g ∈ ℤ*p

Is this secure?



Hardness of Discrete Log

This class is being recorded

In order to talk about computational hardness of discrete log, we 
need to consider a family of instances of increasing size.  
(Remember we are defining hardness asymptotically.)

Vote: If we have a family  such that discrete log for  
is worst-case hard, does this suffice to prove the security of 
Diffie-Hellman?  (Yes/No/No one knows)

(ps, gs) (ps, gs)

Definition: Given a security parameter s, let  be an s-
bit long prime with  also prime, and let  be an element 
of order .  We say that discrete log for  is worst-case 
hard if there is no polynomial time algorithm  such that for all 

,  with .

ps = rqs + 1
qs gs ∈ ℤ*ps

qs (ps, gs)
𝒜

y ∈ ⟨gs⟩ 𝒜(y) = x y = gx
s mod ps
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Hardness of Discrete Log

This class is being recorded

In order to talk about computational hardness of discrete log, we 
need to consider a family of instances of increasing size.  
(Remember we are defining hardness asymptotically.)

Vote: If we have a family  such that discrete log for  
is worst-case hard, does this suffice to prove the security of 
Diffie-Hellman?  (Yes/No/No one knows)

(ps, gs) (ps, gs)

Unknown

One possible problem is that Alice and Bob are choosing random 
a and b, which might not be the hardest examples.

Definition: Given a security parameter s, let  be an s-
bit long prime with  also prime, and let  be an element 
of order .  We say that discrete log for  is worst-case 
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Discrete Log Average Case
Try again:
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Definition: Given a security parameter s, let  be an s-
bit long prime with  also prime, and let  be an element 
of order .  We say that discrete log for  is average-case 
hard if for any polynomial time algorithm , for random 

,

ps = rqs + 1
qs gs ∈ ℤ*ps

qs (ps, gs)
𝒜

y ∈ ⟨gs⟩ Pr(𝒜(y) succeeds) ≤ ϵ(s)

for  a negligible function, where we say  succeeds if 
 with .

ϵ(s) 𝒜(y)
𝒜(y) = x y = gx

s mod ps
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However, this isn’t actually the problem.  It turns out that if 
discrete log is average-case hard, it is worst-case hard.  (This is 
known as random self-reducibility.)



Discrete Log Average Case
Try again:
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Definition: Given a security parameter s, let  be an s-
bit long prime with  also prime, and let  be an element 
of order .  We say that discrete log for  is average-case 
hard if for any polynomial time algorithm , for random 

,

ps = rqs + 1
qs gs ∈ ℤ*ps

qs (ps, gs)
𝒜

y ∈ ⟨gs⟩ Pr(𝒜(y) succeeds) ≤ ϵ(s)

for  a negligible function, where we say  succeeds if 
 with .

ϵ(s) 𝒜(y)
𝒜(y) = x y = gx

s mod ps

However, this isn’t actually the problem.  It turns out that if 
discrete log is average-case hard, it is worst-case hard.  (This is 
known as random self-reducibility.)

But what does it mean for Diffie-Hellman to be secure?



Reminder: General Key Exchange
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Alice Bob

Eve

secret a secret b
g(b)

f(a)

f(a)g(b)

f(a), g(b)

h(a, g(b)) h’(f(a), b)

f, g, h, h’

h(a,g(b)) = h’(f(a),b)
Attack

???



Security Definition for Key Exchange
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Definition: Consider a key exchange protocol .  The transcript 
 for the protocol is a full record of all public information 

announced during a run of the protocol.  Suppose the protocol is 
run generating the key k and let k’ be a uniformly randomly 
generated key.  Then  is secure in the presence of an 
eavesdropper if for all attacks  with a 1-bit output and taking 
as inputs a transcript  and a key k or k’,

Π
T(Π)

Π
𝒜

T(Π)
|Pr(𝒜(T(Π), k) = 1) − Pr(𝒜(T(Π), k′ ) = 1) | ≤ ϵ(s)

Alice Eve

x = ( , k or k’)T(Π)

𝒜(x)
k if 
k’ if 

𝒜(x) = 1
𝒜(x) = 0

with  negligible and the probabilities averaged over k’ and 
over the randomness of  and .

ϵ(s)
𝒜 Π



Why This Definition?
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• It is similar to the definition of security for a pseudorandom 
generator and for EAV-secure encryption.  This means the key 
generated can be used the same way, e.g., in a pseudo one-time 
pad.

• In particular, we can prove a similar reduction to that for 
pseudorandom generators: Define a pseudo one-time pad 
protocol , which uses a key k, generated with the key 
exchange protocol.  If Eve has an attack against , then Eve has 
an attack against the key exchange protocol.

Π
Π

The definition says that the key generated by Alice and Bob 
looks the same to Eve as a random key, even when Eve has 
access to Alice and Bob’s transcript.



Choosing a Base
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Once we have a modulus , with p and q both prime 
and r small (e.g., r=2), the next step is to find a base g.

p = rq + 1

We want to pick g to have large order.  Let us specialize to r=2.  
Then the factors of p-1 are 1, 2, q, and 2q.  These are the possible 
orders for g.  Obviously we shouldn’t choose g with order 2, 
since then  would either be g or 1, which can be easily solved.ga

Vote: Do we prefer order q or order 2q? Or does it not 
matter?



Base of Order 2q
Suppose we choose g with order 2q, so , but 

.
g2q = 1 mod p

gq ≠ 1 mod p

This class is being recorded

Notice: Eve can deduce something about a: Given , 
Eve can tell if A is in the order q subgroup or not.

A = ga mod p

In this case, g generates the whole group of , which has an 
order q subgroup consisting of elements  for integer i.

ℤ*p
g2i

How?
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Base of Order 2q
Suppose we choose g with order 2q, so , but 

.
g2q = 1 mod p

gq ≠ 1 mod p

This class is being recorded

Notice: Eve can deduce something about a: Given , 
Eve can tell if A is in the order q subgroup or not.

A = ga mod p

In this case, g generates the whole group of , which has an 
order q subgroup consisting of elements  for integer i.

ℤ*p
g2i

How? Calculate  and see if it is 1.Aq mod p

A has order q iff a is even.  Similarly, B has order q iff b is even.

The final key  has order q iff either a or b is even, 
which happens iff A or B is order q.

k = gab mod p

Eve can deduce one bit of information about the key 
k. She can use this to distinguish k from random k’.



Picking an Element of Order q
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How can we choose an element of order q?

• Pick a random element 
• Let  (or more generally, )
• If  try again

h ∈ ℤ*p
g = h2 g = hr

g = 1

This generates a random element of order q in .ℤ*p

This means it is better to use a base which has order q.

We want to pick an element of prime order to avoid leaking any 
information about the key.  This is why we need to pick a prime p 
of this specific form to make Diffie-Hellman secure.



Diffie-Hellman and Discrete Log 
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Proposition: If Diffie-Hellman is a secure key exchange protocol 
using modulus and base , then the discrete log problem is 
average-case hard for .

(ps, gs)
(ps, gs)

Proof: By a reduction from the Diffie-Hellman decision problem 
to discrete log.

If we have an algorithm  which succeeds in solving discrete 
log for  with non-negligible probability (for any y), we can 
use it to create an algorithm to find k in Diffie-Hellman using 

, also with non-negligible probability.

𝒜(y)
(ps, gs)

(ps, gs)

HW#5, problem 2b asks you to do this, essentially.

If you know the value of k implied by the transcript of Diffie-
Hellman, you can easily distinguish k from random k’.

Therefore, if Diffie-Hellman is hard, discrete log is also hard.



Hardness of Diffie-Hellman
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The reduction shows that discrete log is at least as hard as 
Diffie-Hellman.  But can we show that Diffie-Hellman is exactly 
as hard as discrete log?

No one knows how to do this.

We would want to reduce discrete log to Diffie-Hellman.  That is, 
given an attack  against Diffie-Hellman, use it to break discrete 
log.

𝒜

The issue is that given A and B, there might be a way to find k, 
or just to distinguish k from random k’ without learning much 
about a or b.  Maybe.  We don’t know.

Why do we care?  
• Because discrete log is harder, it is more likely that is genuinely 

hard, so it is better to base security on that (a weaker assumption).
• Discrete log is a cleaner problem, easier to reuse in other 

cryptosystems.



Algorithms for Discrete Log
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In practice, the best known algorithms for breaking Diffie-
Hellman work by breaking discrete log.

• For poor choices of p and/or g, there are good algorithms 
(such as the Pohlig-Hellman algorithm we saw when p-1 is 
a product of small primes).

• For general , the number field sieve runs in time 
 (apparently).  This is sub-exponential.

• No sub-exponential algorithm for Diffie-Hellman over 
elliptic curves is known.

• Except: A quantum computer can efficiently break discrete 
log over any abelian group, including elliptic curves.

ℤ*p
2O((log p)1/3(log log p)2/3)

Recommended key lengths:

• Over : use p of length 2048 bits or longer.
• Elliptic curves key length: 224 bits or higher.
• But don’t use either if concerned about quantum attacks.

ℤ*p



Another Attack on Diffie-Hellman

BobAlice

secret a secret b
gb mod p

ga mod p

gagb

(gb)a = gab (ga)b = gab

This class is being recorded
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Eve



Another Attack on Diffie-Hellman

Alice

secret a secret b
gb mod p

ga mod p

gagb

(gb)a = gab (ga)b = gab

Alice Bob

secret a’ secret b’
gb′ mod p

ga′ mod p

ga′ gb′ 

(gb′ )a′ = ga′ b′ (ga′ )b′ = ga′ b′ 

This class is being recorded

Eve



Another Attack on Diffie-Hellman

Alice

secret a secret b
gb mod p

ga mod p

gagb

(gb)a = gab (ga)b = gab

Bob

secret a’ secret b’
gb′ mod p

ga′ mod p

ga′ gb′ 

(gb′ )a′ = ga′ b′ (ga′ )b′ = ga′ b′ 

This class is being recorded

Eve

Eve



Man-in-the-Middle Attack
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Alice Eve Bob

In a man-in-the-middle attack, Eve intercepts all communications 
between Alice and Bob and replaces them with messages of her 
choice.  In Diffie-Hellman as we’ve discussed it, Alice and Bob 
have no way to fight this attack and Eve can read all their 
messages.

Alice and Bob need to authenticate their messages.




