
CMSC/Math 456:
Cryptography (Fall 2022)

Lecture 13
Daniel Gottesman

Administrative

This class is being recorded

Midterm: Thursday, Oct. 20 (1.5 weeks from today)

• In class
• Open book (including textbook), no electronic devices
• Will cover material through Diffie-Hellman and El Gamal,

but not RSA.
• Those with accommodations remember to book with ADS.

There have been multiple replacements to fix errors in problem
set #5. Make sure you have the latest version. Also, please do
not use a brute-force approach to problem 1.

Tuesday, Oct. 18 I will review a few (probably 1-3) selected topics
from the first half of the class. I will create a poll on Piazza as to
which topics people would like to see reviewed.

Choosing g and p for Diffie-Hellman

Alice Bob

secret a secret b
gb mod p

ga mod p

gagb

This class is being recorded

(gb)a = gab (ga)b = gab

• Choose random p until we find one such that p is prime
and p-1 = rq, for small r and prime q.

• Choose with high order.
• Or use standard values for g and p.

g ∈ ℤ*p

Is this secure?

Hardness of Discrete Log

This class is being recorded

In order to talk about computational hardness of discrete log, we
need to consider a family of instances of increasing size.
(Remember we are defining hardness asymptotically.)

Vote: If we have a family such that discrete log for
is worst-case hard, does this suffice to prove the security of
Diffie-Hellman? (Yes/No/No one knows)

(ps, gs) (ps, gs)

Definition: Given a security parameter s, let be an s-
bit long prime with also prime, and let be an element
of order . We say that discrete log for is worst-case
hard if there is no polynomial time algorithm such that for all

, with .

ps = rqs + 1
qs gs ∈ ℤ*ps

qs (ps, gs)
𝒜

y ∈ ⟨gs⟩ 𝒜(y) = x y = gx
s mod ps

Hardness of Discrete Log

This class is being recorded

In order to talk about computational hardness of discrete log, we
need to consider a family of instances of increasing size.
(Remember we are defining hardness asymptotically.)

Vote: If we have a family such that discrete log for
is worst-case hard, does this suffice to prove the security of
Diffie-Hellman? (Yes/No/No one knows)

(ps, gs) (ps, gs)

Unknown

Definition: Given a security parameter s, let be an s-
bit long prime with also prime, and let be an element
of order . We say that discrete log for is worst-case
hard if there is no polynomial time algorithm such that for all

, with .

ps = rqs + 1
qs gs ∈ ℤ*ps

qs (ps, gs)
𝒜

y ∈ ⟨gs⟩ 𝒜(y) = x y = gx
s mod ps

Hardness of Discrete Log

This class is being recorded

In order to talk about computational hardness of discrete log, we
need to consider a family of instances of increasing size.
(Remember we are defining hardness asymptotically.)

Vote: If we have a family such that discrete log for
is worst-case hard, does this suffice to prove the security of
Diffie-Hellman? (Yes/No/No one knows)

(ps, gs) (ps, gs)

Unknown

One possible problem is that Alice and Bob are choosing random
a and b, which might not be the hardest examples.

Definition: Given a security parameter s, let be an s-
bit long prime with also prime, and let be an element
of order . We say that discrete log for is worst-case
hard if there is no polynomial time algorithm such that for all

, with .

ps = rqs + 1
qs gs ∈ ℤ*ps

qs (ps, gs)
𝒜

y ∈ ⟨gs⟩ 𝒜(y) = x y = gx
s mod ps

Discrete Log Average Case
Try again:

This class is being recorded

Definition: Given a security parameter s, let be an s-
bit long prime with also prime, and let be an element
of order . We say that discrete log for is average-case
hard if for any polynomial time algorithm , for random

,

ps = rqs + 1
qs gs ∈ ℤ*ps

qs (ps, gs)
𝒜

y ∈ ⟨gs⟩ Pr(𝒜(y) succeeds) ≤ ϵ(s)

for a negligible function, where we say succeeds if
 with .

ϵ(s) 𝒜(y)
𝒜(y) = x y = gx

s mod ps

Discrete Log Average Case
Try again:

This class is being recorded

Definition: Given a security parameter s, let be an s-
bit long prime with also prime, and let be an element
of order . We say that discrete log for is average-case
hard if for any polynomial time algorithm , for random

,

ps = rqs + 1
qs gs ∈ ℤ*ps

qs (ps, gs)
𝒜

y ∈ ⟨gs⟩ Pr(𝒜(y) succeeds) ≤ ϵ(s)

for a negligible function, where we say succeeds if
 with .

ϵ(s) 𝒜(y)
𝒜(y) = x y = gx

s mod ps

However, this isn’t actually the problem. It turns out that if
discrete log is average-case hard, it is worst-case hard. (This is
known as random self-reducibility.)

Discrete Log Average Case
Try again:

This class is being recorded

Definition: Given a security parameter s, let be an s-
bit long prime with also prime, and let be an element
of order . We say that discrete log for is average-case
hard if for any polynomial time algorithm , for random

,

ps = rqs + 1
qs gs ∈ ℤ*ps

qs (ps, gs)
𝒜

y ∈ ⟨gs⟩ Pr(𝒜(y) succeeds) ≤ ϵ(s)

for a negligible function, where we say succeeds if
 with .

ϵ(s) 𝒜(y)
𝒜(y) = x y = gx

s mod ps

However, this isn’t actually the problem. It turns out that if
discrete log is average-case hard, it is worst-case hard. (This is
known as random self-reducibility.)

But what does it mean for Diffie-Hellman to be secure?

Reminder: General Key Exchange

This class is being recorded

Alice Bob

Eve

secret a secret b
g(b)

f(a)

f(a)g(b)

f(a), g(b)

h(a, g(b)) h’(f(a), b)

f, g, h, h’

h(a,g(b)) = h’(f(a),b)
Attack

???

Security Definition for Key Exchange

This class is being recorded

Definition: Consider a key exchange protocol . The transcript
 for the protocol is a full record of all public information

announced during a run of the protocol. Suppose the protocol is
run generating the key k and let k’ be a uniformly randomly
generated key. Then is secure in the presence of an
eavesdropper if for all attacks with a 1-bit output and taking
as inputs a transcript and a key k or k’,

Π
T(Π)

Π
𝒜

T(Π)
|Pr(𝒜(T(Π), k) = 1) − Pr(𝒜(T(Π), k′) = 1) | ≤ ϵ(s)

Alice Eve

x = (, k or k’)T(Π)

𝒜(x)
k if
k’ if

𝒜(x) = 1
𝒜(x) = 0

with negligible and the probabilities averaged over k’ and
over the randomness of and .

ϵ(s)
𝒜 Π

Why This Definition?

This class is being recorded

• It is similar to the definition of security for a pseudorandom
generator and for EAV-secure encryption. This means the key
generated can be used the same way, e.g., in a pseudo one-time
pad.

• In particular, we can prove a similar reduction to that for
pseudorandom generators: Define a pseudo one-time pad
protocol , which uses a key k, generated with the key
exchange protocol. If Eve has an attack against , then Eve has
an attack against the key exchange protocol.

Π
Π

The definition says that the key generated by Alice and Bob
looks the same to Eve as a random key, even when Eve has
access to Alice and Bob’s transcript.

Choosing a Base

This class is being recorded

Once we have a modulus , with p and q both prime
and r small (e.g., r=2), the next step is to find a base g.

p = rq + 1

We want to pick g to have large order. Let us specialize to r=2.
Then the factors of p-1 are 1, 2, q, and 2q. These are the possible
orders for g. Obviously we shouldn’t choose g with order 2,
since then would either be g or 1, which can be easily solved.ga

Vote: Do we prefer order q or order 2q? Or does it not
matter?

Base of Order 2q
Suppose we choose g with order 2q, so , but

.
g2q = 1 mod p

gq ≠ 1 mod p

This class is being recorded

Notice: Eve can deduce something about a: Given ,
Eve can tell if A is in the order q subgroup or not.

A = ga mod p

In this case, g generates the whole group of , which has an
order q subgroup consisting of elements for integer i.

ℤ*p
g2i

How?

Base of Order 2q
Suppose we choose g with order 2q, so , but

.
g2q = 1 mod p

gq ≠ 1 mod p

This class is being recorded

Notice: Eve can deduce something about a: Given ,
Eve can tell if A is in the order q subgroup or not.

A = ga mod p

In this case, g generates the whole group of , which has an
order q subgroup consisting of elements for integer i.

ℤ*p
g2i

How? Calculate and see if it is 1.Aq mod p

Base of Order 2q
Suppose we choose g with order 2q, so , but

.
g2q = 1 mod p

gq ≠ 1 mod p

This class is being recorded

Notice: Eve can deduce something about a: Given ,
Eve can tell if A is in the order q subgroup or not.

A = ga mod p

In this case, g generates the whole group of , which has an
order q subgroup consisting of elements for integer i.

ℤ*p
g2i

How? Calculate and see if it is 1.Aq mod p

A has order q iff a is even. Similarly, B has order q iff b is even.

Base of Order 2q
Suppose we choose g with order 2q, so , but

.
g2q = 1 mod p

gq ≠ 1 mod p

This class is being recorded

Notice: Eve can deduce something about a: Given ,
Eve can tell if A is in the order q subgroup or not.

A = ga mod p

In this case, g generates the whole group of , which has an
order q subgroup consisting of elements for integer i.

ℤ*p
g2i

How? Calculate and see if it is 1.Aq mod p

A has order q iff a is even. Similarly, B has order q iff b is even.

The final key has order q iff either a or b is even,
which happens iff A or B is order q.

k = gab mod p

Base of Order 2q
Suppose we choose g with order 2q, so , but

.
g2q = 1 mod p

gq ≠ 1 mod p

This class is being recorded

Notice: Eve can deduce something about a: Given ,
Eve can tell if A is in the order q subgroup or not.

A = ga mod p

In this case, g generates the whole group of , which has an
order q subgroup consisting of elements for integer i.

ℤ*p
g2i

How? Calculate and see if it is 1.Aq mod p

A has order q iff a is even. Similarly, B has order q iff b is even.

The final key has order q iff either a or b is even,
which happens iff A or B is order q.

k = gab mod p

Eve can deduce one bit of information about the key
k. She can use this to distinguish k from random k’.

Picking an Element of Order q

This class is being recorded

How can we choose an element of order q?

• Pick a random element
• Let (or more generally,)
• If try again

h ∈ ℤ*p
g = h2 g = hr

g = 1

This generates a random element of order q in .ℤ*p

This means it is better to use a base which has order q.

We want to pick an element of prime order to avoid leaking any
information about the key. This is why we need to pick a prime p
of this specific form to make Diffie-Hellman secure.

Diffie-Hellman and Discrete Log

This class is being recorded

Proposition: If Diffie-Hellman is a secure key exchange protocol
using modulus and base , then the discrete log problem is
average-case hard for .

(ps, gs)
(ps, gs)

Proof: By a reduction from the Diffie-Hellman decision problem
to discrete log.

If we have an algorithm which succeeds in solving discrete
log for with non-negligible probability (for any y), we can
use it to create an algorithm to find k in Diffie-Hellman using

, also with non-negligible probability.

𝒜(y)
(ps, gs)

(ps, gs)

HW#5, problem 2b asks you to do this, essentially.

If you know the value of k implied by the transcript of Diffie-
Hellman, you can easily distinguish k from random k’.

Therefore, if Diffie-Hellman is hard, discrete log is also hard.

Hardness of Diffie-Hellman

This class is being recorded

The reduction shows that discrete log is at least as hard as
Diffie-Hellman. But can we show that Diffie-Hellman is exactly
as hard as discrete log?

No one knows how to do this.

We would want to reduce discrete log to Diffie-Hellman. That is,
given an attack against Diffie-Hellman, use it to break discrete
log.

𝒜

The issue is that given A and B, there might be a way to find k,
or just to distinguish k from random k’ without learning much
about a or b. Maybe. We don’t know.

Why do we care?
• Because discrete log is harder, it is more likely that is genuinely

hard, so it is better to base security on that (a weaker assumption).
• Discrete log is a cleaner problem, easier to reuse in other

cryptosystems.

Algorithms for Discrete Log

This class is being recorded

In practice, the best known algorithms for breaking Diffie-
Hellman work by breaking discrete log.

• For poor choices of p and/or g, there are good algorithms
(such as the Pohlig-Hellman algorithm we saw when p-1 is
a product of small primes).

• For general , the number field sieve runs in time
 (apparently). This is sub-exponential.

• No sub-exponential algorithm for Diffie-Hellman over
elliptic curves is known.

• Except: A quantum computer can efficiently break discrete
log over any abelian group, including elliptic curves.

ℤ*p
2O((log p)1/3(log log p)2/3)

Recommended key lengths:

• Over : use p of length 2048 bits or longer.
• Elliptic curves key length: 224 bits or higher.
• But don’t use either if concerned about quantum attacks.

ℤ*p

Another Attack on Diffie-Hellman

BobAlice

secret a secret b
gb mod p

ga mod p

gagb

(gb)a = gab (ga)b = gab

This class is being recorded

Another Attack on Diffie-Hellman

Alice

secret a secret b
gb mod p

ga mod p

gagb

(gb)a = gab (ga)b = gab

This class is being recorded

Eve

Another Attack on Diffie-Hellman

Alice

secret a secret b
gb mod p

ga mod p

gagb

(gb)a = gab (ga)b = gab

Alice Bob

secret a’ secret b’
gb′ mod p

ga′ mod p

ga′ gb′

(gb′)a′ = ga′ b′ (ga′)b′ = ga′ b′

This class is being recorded

Eve

Another Attack on Diffie-Hellman

Alice

secret a secret b
gb mod p

ga mod p

gagb

(gb)a = gab (ga)b = gab

Bob

secret a’ secret b’
gb′ mod p

ga′ mod p

ga′ gb′

(gb′)a′ = ga′ b′ (ga′)b′ = ga′ b′

This class is being recorded

Eve

Eve

Man-in-the-Middle Attack

This class is being recorded

Alice Eve Bob

In a man-in-the-middle attack, Eve intercepts all communications
between Alice and Bob and replaces them with messages of her
choice. In Diffie-Hellman as we’ve discussed it, Alice and Bob
have no way to fight this attack and Eve can read all their
messages.

Alice and Bob need to authenticate their messages.

