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Administrative

This class is being recorded

Midterm: Thursday, Oct. 20 (Thursday)

• In class
• Open book (including textbook), no electronic devices
• Will cover material through Diffie-Hellman and El Gamal, 

but not RSA.

Solution set #5 is out.  Practice problems from the textbook are 
available on the course web page.



Motivation for Reductions
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What do we want to accomplish with a reduction?

• We want to measure the relative difficulty of different 
computational problems.  Example: reduction from Diffie-
Hellman to discrete log.

• We have one problem we believe is hard and want to use it 
to show that other problems are hard (e.g., breaking a 
cryptographic protocol).  We haven’t really seen an example 
of this in class yet.

• We want to use a cryptographic primitive as a component 
to implement a more complicated protocol and want to 
prove that this is safe to do.  Example: pseudorandom 
generator to make pseudo one-time pad.



Basic Concept of a Reduction
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At its heart, a reduction is a statement of the form “If you can do 
A, then you can do B.”

Examples:
• If you can boil water, then you can cook an egg.  
• If you can roller blade, then you can ice skate.
• If you can ice skate, then you can roller blade.
• If you can breathe water, then you can visit sunken ships.
• If you can go faster than light, you can travel back in time.

But this doesn’t really work:

• If you can breathe water, then you can fly to the moon.

because it is non-constructive.

A reduction is supposed to tell you how doing A lets you do B.



Contrapositive of a Reduction
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If you can do A, then you can do B.

If you can’t do B, then you can’t do A.

We most often prove the “A implies B” statement of a reduction 
but most often use the “not B implies not A” contrapositive.

E.g.: 
• If you can’t roller blade, then you must not be able to ice skate.
• If you can’t break the pseudorandom generator, then you can’t 

break the pseudo one-time pad.



Pseudo One-Time Pad Again

Alice Eve

x

𝒜′ (x)
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Virtual Alice

key k=x

Virtual Eve

Virtual pseudo OTP

We used a reduction to say “If you can break the pseudo one-
time pad, then you can break the pseudorandom generator.”



Pseudo One-Time Pad Again

Alice Eve
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Virtual Alice

key k=x

Virtual Eve

𝒜(c)

ℬ(s)

c

𝒜(c)
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i

Virtual pseudo OTP

We used a reduction to say “If you can break the pseudo one-
time pad, then you can break the pseudorandom generator.”



Pseudo One-Time Pad Again

Alice Eve

x

𝒜′ (x)
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Virtual Alice

key k=x

Virtual Eve

𝒜(c)

ℬ(s)

c

𝒜(c)

, m0 m1
mi

c

i

Virtual pseudo OTP

Did ?  If 
so, .  
Else, .

𝒜(c) = i
𝒜′ (x) = 1

𝒜′ (x) = 0

If Virtual Eve’s attack 
succeeds, Eve 
guesses x was 
pseudorandom.  
Otherwise, she 
guesses x is random.

We used a reduction to say “If you can break the pseudo one-
time pad, then you can break the pseudorandom generator.”



Strategy for Deriving The Reduction
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To make this reduction work, we need to fill in the space 
between the “A” statement and the “B” statement:

1. If you can break the pseudo one-time pad, then

n. You can break the pseudorandom generator.

?



Strategy II
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To start to fill in the blanks, we should think about what those 
statements mean.

n-1. There is an attack  that distinguishes G(y) from 
random x.
n. You can break the pseudorandom generator.

𝒜′ (x)

1. If you can break the pseudo one-time pad, then
2. There is an attack  that guesses the message 
successfully in the pseudo one-time pad.

𝒜(c)

?



Strategy II
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To start to fill in the blanks, we should think about what those 
statements mean.

n-1. There is an attack  that distinguishes G(y) from 
random x.
n. You can break the pseudorandom generator.

𝒜′ (x)

1. If you can break the pseudo one-time pad, then
2. There is an attack  that guesses the message 
successfully in the pseudo one-time pad.

𝒜(c)

?
We need a strategy for 
constructing  from .𝒜′ (x) 𝒜(c)



Strategy III
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We need a strategy for constructing  from .𝒜′ (x) 𝒜(c)

Here we can recognize that if there is an attack against the 
pseudo one-time pad, then that makes the pseudo one-time 
pad different from the true one-time pad, which is perfectly 
secret.

But the only difference between the pseudo one-time pad and 
the one-time pad is that the former uses G(y) as key and the 
latter uses a random x as key.

So  should succeed when the key is G(y) and it must fail 
when the key is a random x.

𝒜(c)

This suggests that we should create the virtual protocol and an 
 that reports whether the attack  succeeds.𝒜′ (x) 𝒜(c)



Strategy IV

n-1. There is an attack  that distinguishes G(y) from 
random x.
n. You can break the pseudorandom generator.

𝒜′ (x)

1. If you can break the pseudo one-time pad, then
2. There is an attack  that guesses the message 
successfully in the pseudo one-time pad.
3. Define a virtual protocol to run the pseudo one-time pad 
experiment with attack  and an  that reports 
whether the attack  succeeds.

𝒜(c)

𝒜(c) 𝒜′ (x)
𝒜(c)

?
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Strategy IV

n-1. There is an attack  that distinguishes G(y) from 
random x.
n. You can break the pseudorandom generator.

𝒜′ (x)

1. If you can break the pseudo one-time pad, then
2. There is an attack  that guesses the message 
successfully in the pseudo one-time pad.
3. Define a virtual protocol to run the pseudo one-time pad 
experiment with attack  and an  that reports 
whether the attack  succeeds.

𝒜(c)

𝒜(c) 𝒜′ (x)
𝒜(c)

?
Now we need to fill in the gaps by 
analyzing the attack  and 
showing that it gives us the desired 
attack against the PRG.

𝒜′ (x)
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Complete Reduction Outline

7. There is an attack  that distinguishes G(y) from 
random x.
8. You can break the pseudorandom generator.

𝒜′ (x)

1. If you can break the pseudo one-time pad, then
2. There is an attack  that guesses the message 
successfully in the pseudo one-time pad.
3. Define a virtual protocol to run the pseudo one-time pad 
experiment with attack  and an  that reports 
whether the attack  succeeds.

𝒜(c)

𝒜(c) 𝒜′ (x)
𝒜(c)
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4. Calculate probability of success of  when x is random.
5. Calculate probability of success of  when x = G(y).
6. Verify that  runs in polynomial time.

𝒜(x)
𝒜(x)

𝒜′ (x)



Modular Arithmetic Overview
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Modular arithmetic mod N is an alternate system of arithmetic 
using just the numbers 0 through N-1.
Think of modular numbers as an alternate data type which 
happens sometimes to agree with integer type but not always.

However, we do want modular addition and multiplication 
to have many of the same properties as integer addition and 
multiplication.

• Addition and subtraction work basically the same way as 
integer addition and subtraction.

• Multiplication is also very similar to integer multiplication.
• Division, however, is quite different and is not always defined.
• Exponentiation is similar to integer exponentiation.

The other big difference is that modular numbers don’t 
have a well-defined notion of “bigger” since counting up 
eventually brings us back to where we started.



Modular Arithmetic Examples
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+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

Mod 5 addition and multiplication:

* 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

Each 
non-zero 
row and 
column 
has all #s

+ 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4

* 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1

Mod 6 addition and multiplication:

Rows 
and 
columns 
have 0s 
and 
repeat #s



Modular Arithmetic Summary
• Division by b is well-defined mod N when .
•  is a group.
• Euclid’s algorithm takes input a and b and finds X and Y such that 

.
• Runs in time polynomial in  and .
• Can find gcd.
• Can find modular multiplicative inverse .

• Modular exponentiation:
• Efficient algorithm by repeated squaring.
• Eventually repeats.  The smallest r such that  is 

the order of g mod N.  Then  if .
• Totient function : number of #s <N relatively prime to N.

• If p is prime, .  If , .
• Euler-Fermat:  when .

• Order of g mod N is a factor of .
• If g is a generator mod N, .

gcd(b, N) = 1
ℤ*N = {b | gcd(b, N) = 1}

aX + bY = gcd(a, b)
log a log b

a−1 mod N

gr = 1 mod N
ga = gb mod N a = b mod r

φ(N)
φ(p) = p − 1 N = pq φ(N) = (p − 1)(q − 1)
gφ(N) = 1 mod N gcd(g, N) = 1

φ(N)
ord(gj) = φ(N)/ gcd( j, φ(N))
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Chinese Remainder Theorem
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Chinese remainder theorem: When a, b relatively prime,
x = xa mod a
x = xb mod b

have unique solution x mod ab.

Run Euclid’s algorithm to find 
X and Y such that 

aX + bY = 1

Then

x = xbaX + xabY

Example: , , , a = 3 b = 5 xa = 2
xb = 1

x = 2 mod 3
x = 1 mod 5

Euclid’s algorithm:

3 * 2 + 5 * (−1) = 1
, X = 2 Y = − 1

Then
x = 1 * 3 * 2 + 2 * 5 * (−1)

= 6 − 10 = − 4 = 11 mod 15

Algorithm:



Group Theory Summary

Definition: A group (G, *) is a set G of elements along with a 
binary operation  with the following properties:* : G × G → G

1. Closure:  when .
2. Associativity: , .
3. Identity:  such that .
4. Inverses:  such that 

.

g * h ∈ G g, h ∈ G
∀g, h, k ∈ G (g * h) * k = g * (h * k)

∃e ∈ G ∀g ∈ G, e * g = g * e = g
∀g ∈ G, ∃g−1 ∈ G

g * g−1 = g−1 * g = e
A subgroup H of G, written  is a subset of G which is also 
a group.  The order  of a finite group G is the number of 
elements.

H ≤ G
|G |

Lagrange’s Theorem: If H and G are finite groups with , 
then  divides .

H ≤ G
|H | |G |

This class is being recorded

A set S generates a group G if all elements of G can be written 
as products of elements of S.  A group that can be generated by 
just one element is cyclic.



Group Theory Example
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Permutations of 3 elements: Group , S3 |S3 | = 6

.

Identity e Rotate 
clockwise R

Rotate ccw 
R−1 = R2

Swap left SL Swap right SR Swap bottom SB

 with group operation composition.S3 = {e, R, R2, SL, SR, SB}



Group Properties: Closure
Closure: Product of two permutations is a permutation.

This class is being recorded

E.g.:  (acts 
from right)

SLSR

Starting 
arrangement

SR SL

=

= R



Group Properties: Others

Associativity: Can be checked but is automatic for composition of 
operations.
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Identity: e is the identity element of the group.  eσ = σ

Inverses: R and  are inverses of each other.  , , and  are 
inverses of themselves.

R2 SL SR SB

Non-abelian: SRSL = R2 ≠ R = SLSR

Starting 
arrangement

Swap left SL Swap right SR

=

R2



Subgroups

.

Identity e Rotate 
clockwise R

Rotate ccw 
R−1 = R2

Order 3: Generated by R or by .R2

3 order 2 subgroups: For instance, generated by .SL

This class is being recorded

.

Identity e Swap left SL

Note: Order of 
subgroups a 
factor of 6 
(Lagrange’s thm.)




