
CMSC/Math 456:
Cryptography (Fall 2022)

Lecture 15
Daniel Gottesman

Administrative

This class is being recorded

Midterm: Thursday, Oct. 20 (Thursday)

• In class
• Open book (including textbook), no electronic devices
• Will cover material through Diffie-Hellman and El Gamal,

but not RSA.

Solution set #5 is out. Practice problems from the textbook are
available on the course web page.

Motivation for Reductions

This class is being recorded

What do we want to accomplish with a reduction?

• We want to measure the relative difficulty of different
computational problems. Example: reduction from Diffie-
Hellman to discrete log.

• We have one problem we believe is hard and want to use it
to show that other problems are hard (e.g., breaking a
cryptographic protocol). We haven’t really seen an example
of this in class yet.

• We want to use a cryptographic primitive as a component
to implement a more complicated protocol and want to
prove that this is safe to do. Example: pseudorandom
generator to make pseudo one-time pad.

Basic Concept of a Reduction

This class is being recorded

At its heart, a reduction is a statement of the form “If you can do
A, then you can do B.”

Examples:
• If you can boil water, then you can cook an egg.
• If you can roller blade, then you can ice skate.
• If you can ice skate, then you can roller blade.
• If you can breathe water, then you can visit sunken ships.
• If you can go faster than light, you can travel back in time.

But this doesn’t really work:

• If you can breathe water, then you can fly to the moon.

because it is non-constructive.

A reduction is supposed to tell you how doing A lets you do B.

Contrapositive of a Reduction

This class is being recorded

If you can do A, then you can do B.

If you can’t do B, then you can’t do A.

We most often prove the “A implies B” statement of a reduction
but most often use the “not B implies not A” contrapositive.

E.g.:
• If you can’t roller blade, then you must not be able to ice skate.
• If you can’t break the pseudorandom generator, then you can’t

break the pseudo one-time pad.

Pseudo One-Time Pad Again

Alice Eve

x

𝒜′ (x)

This class is being recorded

Virtual Alice

key k=x

Virtual Eve

Virtual pseudo OTP

We used a reduction to say “If you can break the pseudo one-
time pad, then you can break the pseudorandom generator.”

Pseudo One-Time Pad Again

Alice Eve

x

𝒜′ (x)

This class is being recorded

Virtual Alice

key k=x

Virtual Eve

𝒜(c)

ℬ(s)

c

𝒜(c)

, m0 m1
mi

c

i

Virtual pseudo OTP

We used a reduction to say “If you can break the pseudo one-
time pad, then you can break the pseudorandom generator.”

Pseudo One-Time Pad Again

Alice Eve

x

𝒜′ (x)

This class is being recorded

Virtual Alice

key k=x

Virtual Eve

𝒜(c)

ℬ(s)

c

𝒜(c)

, m0 m1
mi

c

i

Virtual pseudo OTP

Did ? If
so, .
Else, .

𝒜(c) = i
𝒜′ (x) = 1

𝒜′ (x) = 0

If Virtual Eve’s attack
succeeds, Eve
guesses x was
pseudorandom.
Otherwise, she
guesses x is random.

We used a reduction to say “If you can break the pseudo one-
time pad, then you can break the pseudorandom generator.”

Strategy for Deriving The Reduction

This class is being recorded

To make this reduction work, we need to fill in the space
between the “A” statement and the “B” statement:

1. If you can break the pseudo one-time pad, then

n. You can break the pseudorandom generator.

?

Strategy II

This class is being recorded

To start to fill in the blanks, we should think about what those
statements mean.

n-1. There is an attack that distinguishes G(y) from
random x.
n. You can break the pseudorandom generator.

𝒜′ (x)

1. If you can break the pseudo one-time pad, then
2. There is an attack that guesses the message
successfully in the pseudo one-time pad.

𝒜(c)

?

Strategy II

This class is being recorded

To start to fill in the blanks, we should think about what those
statements mean.

n-1. There is an attack that distinguishes G(y) from
random x.
n. You can break the pseudorandom generator.

𝒜′ (x)

1. If you can break the pseudo one-time pad, then
2. There is an attack that guesses the message
successfully in the pseudo one-time pad.

𝒜(c)

?
We need a strategy for
constructing from .𝒜′ (x) 𝒜(c)

Strategy III

This class is being recorded

We need a strategy for constructing from .𝒜′ (x) 𝒜(c)

Here we can recognize that if there is an attack against the
pseudo one-time pad, then that makes the pseudo one-time
pad different from the true one-time pad, which is perfectly
secret.

But the only difference between the pseudo one-time pad and
the one-time pad is that the former uses G(y) as key and the
latter uses a random x as key.

So should succeed when the key is G(y) and it must fail
when the key is a random x.

𝒜(c)

This suggests that we should create the virtual protocol and an
 that reports whether the attack succeeds.𝒜′ (x) 𝒜(c)

Strategy IV

n-1. There is an attack that distinguishes G(y) from
random x.
n. You can break the pseudorandom generator.

𝒜′ (x)

1. If you can break the pseudo one-time pad, then
2. There is an attack that guesses the message
successfully in the pseudo one-time pad.
3. Define a virtual protocol to run the pseudo one-time pad
experiment with attack and an that reports
whether the attack succeeds.

𝒜(c)

𝒜(c) 𝒜′ (x)
𝒜(c)

?

This class is being recorded

Strategy IV

n-1. There is an attack that distinguishes G(y) from
random x.
n. You can break the pseudorandom generator.

𝒜′ (x)

1. If you can break the pseudo one-time pad, then
2. There is an attack that guesses the message
successfully in the pseudo one-time pad.
3. Define a virtual protocol to run the pseudo one-time pad
experiment with attack and an that reports
whether the attack succeeds.

𝒜(c)

𝒜(c) 𝒜′ (x)
𝒜(c)

?
Now we need to fill in the gaps by
analyzing the attack and
showing that it gives us the desired
attack against the PRG.

𝒜′ (x)

This class is being recorded

Complete Reduction Outline

7. There is an attack that distinguishes G(y) from
random x.
8. You can break the pseudorandom generator.

𝒜′ (x)

1. If you can break the pseudo one-time pad, then
2. There is an attack that guesses the message
successfully in the pseudo one-time pad.
3. Define a virtual protocol to run the pseudo one-time pad
experiment with attack and an that reports
whether the attack succeeds.

𝒜(c)

𝒜(c) 𝒜′ (x)
𝒜(c)

This class is being recorded

4. Calculate probability of success of when x is random.
5. Calculate probability of success of when x = G(y).
6. Verify that runs in polynomial time.

𝒜(x)
𝒜(x)

𝒜′ (x)

Modular Arithmetic Overview

This class is being recorded

Modular arithmetic mod N is an alternate system of arithmetic
using just the numbers 0 through N-1.
Think of modular numbers as an alternate data type which
happens sometimes to agree with integer type but not always.

However, we do want modular addition and multiplication
to have many of the same properties as integer addition and
multiplication.

• Addition and subtraction work basically the same way as
integer addition and subtraction.

• Multiplication is also very similar to integer multiplication.
• Division, however, is quite different and is not always defined.
• Exponentiation is similar to integer exponentiation.

The other big difference is that modular numbers don’t
have a well-defined notion of “bigger” since counting up
eventually brings us back to where we started.

Modular Arithmetic Examples

This class is being recorded

+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

Mod 5 addition and multiplication:

* 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

Each
non-zero
row and
column
has all #s

+ 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4

* 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1

Mod 6 addition and multiplication:

Rows
and
columns
have 0s
and
repeat #s

Modular Arithmetic Summary
• Division by b is well-defined mod N when .
• is a group.
• Euclid’s algorithm takes input a and b and finds X and Y such that

.
• Runs in time polynomial in and .
• Can find gcd.
• Can find modular multiplicative inverse .

• Modular exponentiation:
• Efficient algorithm by repeated squaring.
• Eventually repeats. The smallest r such that is

the order of g mod N. Then if .
• Totient function : number of #s <N relatively prime to N.

• If p is prime, . If , .
• Euler-Fermat: when .

• Order of g mod N is a factor of .
• If g is a generator mod N, .

gcd(b, N) = 1
ℤ*N = {b | gcd(b, N) = 1}

aX + bY = gcd(a, b)
log a log b

a−1 mod N

gr = 1 mod N
ga = gb mod N a = b mod r

φ(N)
φ(p) = p − 1 N = pq φ(N) = (p − 1)(q − 1)
gφ(N) = 1 mod N gcd(g, N) = 1

φ(N)
ord(gj) = φ(N)/ gcd(j, φ(N))

This class is being recorded

Chinese Remainder Theorem

This class is being recorded

Chinese remainder theorem: When a, b relatively prime,
x = xa mod a
x = xb mod b

have unique solution x mod ab.

Run Euclid’s algorithm to find
X and Y such that

aX + bY = 1

Then

x = xbaX + xabY

Example: , , , a = 3 b = 5 xa = 2
xb = 1

x = 2 mod 3
x = 1 mod 5

Euclid’s algorithm:

3 * 2 + 5 * (−1) = 1
, X = 2 Y = − 1

Then
x = 1 * 3 * 2 + 2 * 5 * (−1)

= 6 − 10 = − 4 = 11 mod 15

Algorithm:

Group Theory Summary

Definition: A group (G, *) is a set G of elements along with a
binary operation with the following properties:* : G × G → G

1. Closure: when .
2. Associativity: , .
3. Identity: such that .
4. Inverses: such that

.

g * h ∈ G g, h ∈ G
∀g, h, k ∈ G (g * h) * k = g * (h * k)

∃e ∈ G ∀g ∈ G, e * g = g * e = g
∀g ∈ G, ∃g−1 ∈ G

g * g−1 = g−1 * g = e
A subgroup H of G, written is a subset of G which is also
a group. The order of a finite group G is the number of
elements.

H ≤ G
|G |

Lagrange’s Theorem: If H and G are finite groups with ,
then divides .

H ≤ G
|H | |G |

This class is being recorded

A set S generates a group G if all elements of G can be written
as products of elements of S. A group that can be generated by
just one element is cyclic.

Group Theory Example

This class is being recorded

Permutations of 3 elements: Group , S3 |S3 | = 6

.

Identity e Rotate
clockwise R

Rotate ccw
R−1 = R2

Swap left SL Swap right SR Swap bottom SB

 with group operation composition.S3 = {e, R, R2, SL, SR, SB}

Group Properties: Closure
Closure: Product of two permutations is a permutation.

This class is being recorded

E.g.: (acts
from right)

SLSR

Starting
arrangement

SR SL

=

= R

Group Properties: Others

Associativity: Can be checked but is automatic for composition of
operations.

This class is being recorded

Identity: e is the identity element of the group. eσ = σ

Inverses: R and are inverses of each other. , , and are
inverses of themselves.

R2 SL SR SB

Non-abelian: SRSL = R2 ≠ R = SLSR

Starting
arrangement

Swap left SL Swap right SR

=

R2

Subgroups

.

Identity e Rotate
clockwise R

Rotate ccw
R−1 = R2

Order 3: Generated by R or by .R2

3 order 2 subgroups: For instance, generated by .SL

This class is being recorded

.

Identity e Swap left SL

Note: Order of
subgroups a
factor of 6
(Lagrange’s thm.)

