# CMSC/Math 456: Cryptography (Fall 2022)

Lecture 16
Daniel Gottesman

### **Administrative**

There will be no problem set this week.







Public-key encryption is an asymmetric protocol.



Public-key encryption is an asymmetric protocol.

### **Definition of Public Key Encryption**

Definition: A public-key encryption protocol is a set of three probabilistic polynomial-time algorithms (Gen, Enc, Dec).

Gen is the key generation algorithm. It takes as input s, the security parameter, and outputs a public key, private key pair  $(e, d) \in \{0,1\}^* \times \{0,1\}^*$ .

Enc is the encryption algorithm. It takes as input e and a plaintext or message  $m \in \{0,1\}^*$  and outputs a ciphertext  $c \in \{0,1\}^*$ .

Dec is the decryption algorithm. It takes as input d and c and outputs some  $m' \in \{0,1\}^*$ .

The encryption protocol is correct if

$$Dec(d, Enc(e, m)) = m$$

Note: Gen here is much more complex than for private-key encryption and doesn't just generate random bit strings.

## Public Key Security

Definition: A public-key encryption protocol (Gen, Enc, Dec) with security parameter s has indistinguishable encryptions in the presence of an eavesdropper (is EAV-secure) if, for any pair of messages  $m_0$  and  $m_1$  chosen by the adversary (using efficient algorithm  $\mathcal{B}(e,s)$ ) and for any efficient attack  $\mathcal{A}(e,c)$ ,

$$|\Pr_{(e,d)}(\mathcal{A}(e,Enc(e,m_0))=1)-\Pr_{(e,d)}(\mathcal{A}(e,Enc(e,m_1))=1)|\leq \epsilon(s)$$

for negligible e(s) and probability taken over valid public key, private key pairs (e,d) and randomness of Enc,  $\mathscr{A}$ , and  $\mathscr{B}$ .



### **RSA Encryption (Picture)**

In RSA, Gen creates a public key (N, e) and a private key (N,d) with  $ed = 1 \mod \varphi(N)$ .



"RSA" stands for the inventors: Rivest, Shamir, and Adleman

### RSA Encryption (Gen, Enc, Dec)

Gen: Generate two random primes p and q which are s bits long. Let N = pq. Choose  $e, d \in \mathbb{Z}_N^*$  such that  $ed = 1 \mod \varphi(N)$ . The public key is (N, e) and the private key is (N, d).

Enc: Given message m and public key (N, e). The ciphertext is  $c = m^e \mod N$ .

Dec: Given ciphertext c and private key (N, d). The decrypted message is  $m' = c^d \mod N$ .

#### Example:

Gen: Let p = 11, q = 17. Then N = 187 and  $\varphi(N) = (p-1)(q-1) = 10 \cdot 16 = 160$ . Let e = 3; then d = 107 (so  $3 \cdot 107 = 1 \mod 160$ ).

Enc: Let m = 113. Then  $c = 113^3 \mod 187 = 5$ .

Dec:  $m' = 5^{107} \mod 187 = 113$ .

### Gen Algorithm Analyzed

Why pick p and q instead of picking N directly?

To pick e and d, we need to know  $\varphi(N)$ , and to find  $\varphi(N)$ , we need to know the prime factorization of N. Factoring seems hard, so we pick the prime factors directly.

• How do we pick e and d?

We can pick e in any convenient way. Then use Euclid's algorithm to find its multiplicative inverse  $\mod \varphi(N)$ .

• Eve knows e. Can't she also apply Euclid's algorithm to find e?

Only if she knows  $\varphi(N)$ . But to compute  $\varphi(N)$ , it seems she needs to know the prime factorization of N. And factoring seems hard.

### Why is RSA Correct?

Why does Dec(d, Enc(e, m)) = m?

Recall the Euler-Fermat theorem:  $x^{\varphi(N)} = 1 \mod N$ .

#### Then

$$Dec(d, Enc(e, m)) = m^{ed} \mod N$$

But

$$ed = 1 + k\varphi(N)$$

SO

$$Dec(d, Enc(e, m)) = m^{1+k\varphi(N)} \mod N$$
$$= m \cdot (m^{\varphi(N)})^k \mod N$$
$$= m \cdot 1^k \mod N$$

### **Hardness of Factoring**

Factoring a product of two large primes seems to be hard.

Definition: Given a security parameter s, let P(N) be a probability distribution over (2s)-bit numbers. We say that factoring is average-case hard for P(N) if for any polynomial time algorithm  $\mathcal{A}$ , for random N chosen according to P(N),

$$\Pr(\mathcal{A}(N) \text{ succeeds}) \le \epsilon(s)$$

for  $\epsilon(s)$  a negligible function, where we say  $\mathcal{A}(N)$  succeeds if  $\mathcal{A}(N) = p$  with p a non-trivial factor of N:  $1 and <math>p \mid N$ .

When N is chosen to be the product of two random s-bit primes, it appears that factoring is hard for the resulting distribution.

### Factoring and RSA

If Eve can factor N, she can break RSA:

Eve factors N = pq and computes  $\varphi(N) = (p-1)(q-1)$ . Using Euclid's algorithm, she computes d given e and  $\varphi(N)$ .

Theorem: Given N, if Eve knows d and e, she has an efficient probabilistic algorithm to factor N.



But perhaps it is possible to break RSA without learning the private key ....

### Is RSA Secure?

Vote: Is RSA as I've presented it CPA-secure? (Yes/No/Unknown)

#### Is RSA Secure?

Vote: Is RSA as I've presented it CPA-secure? (Yes/No/Unknown)

Answer: No.

This version of RSA (Plain RSA) is deterministic: It cannot be CPA-secure.

If Eve is trying to determine which of two messages was sent, she can just try encrypting each of them using the public key. In Plain RSA, the message  $m_i$  always corresponds to ciphertext  $c_i = m_i^e \mod N$ , so she can easily find i by matching  $c = c_i$ .

#### Is RSA Secure?

Vote: Is RSA as I've presented it CPA-secure? (Yes/No/Unknown)

Answer: No.

This version of RSA (Plain RSA) is deterministic: It cannot be CPA-secure.

If Eve is trying to determine which of two messages was sent, she can just try encrypting each of them using the public key. In Plain RSA, the message  $m_i$  always corresponds to ciphertext  $c_i = m_i^e \mod N$ , so she can easily find i by matching  $c = c_i$ .

We need to add a random element to Enc.

### **Padded RSA**

One option to add randomness to RSA is to pad the message with random bits:

Gen remains the same.

Enc: Given message m, generate  $\ell$ -bit random r and let  $\tilde{m} = r || m$  (the concatenation r followed by m). Then the ciphertext  $c = \tilde{m}^e \mod N$ .

Dec: Given c, compute  $\tilde{m}' = c^d \mod N$ . Discard the first  $\ell$  bits of  $\tilde{m}'$  to get m'.

#### Example:

Gen: N = 187, e = 3, and d = 107 as before.

Enc: Let  $m = 15 = 1111_2$ . Pad using  $r = 110_2$ . Then  $\tilde{m} = 1101111_2 = 111$  and  $c = 111^3 \mod 187 = 100$ .

Dec:  $\tilde{m}' = 100^{107} \mod 187 = 111$  and m' = 15.

### **Security of Padded RSA**

If  $\ell = \lfloor \log_2 N \rfloor - 1$ , Padded RSA is CPA-secure assuming security of an RSA assumption: It is hard to find **x** such that  $x^e = y \mod N$ .

But this implies just 1-bit messages.

Shorter padding is not known to be secure (at least without a stronger assumption), but is plausibly secure as long as  $\ell$  is not too short.

RSA PKCS #1 v1.5 is a variant of padded RSA where some of the padded bits are random and some have fixed values. With a good choice of parameters, it is probably CPA-secure in the same sense as Padded RSA.

### Picking e

#### How do we pick e?

- e must be relatively prime to  $\varphi(N)$  so that it has an inverse  $\operatorname{mod} \varphi(N)$ .
- Otherwise, any e works.
- But if e and m are both small ( $m^e < N$ ), decrypting becomes a problem over  $\mathbb{Z}$  (which is easy) instead of over  $\mathbb{Z}_N$  (which is hard).
- Might as well pick an e so that it is easy to calculate  $m^e \mod N$ .
  - Using repeated squaring, the # of terms to multiply together is the # of I's in the binary representation of e.
  - So pick e with weight 2, e.g., e=3.
  - Or maybe a larger e of the form  $2^a + 1$  to avoid the possible small e and small m attack.

### Algorithms for Factoring

A factoring algorithm breaks RSA ... so how hard is factoring?

Similar to discrete log:

- When N=pq and p-I is a product of small primes, Pollard's p-I algorithm factors efficiently.
- For general N, the number field sieve runs in time  $2^{O((\log N)^{1/3}(\log\log N)^{2/3})}$  (apparently). This is sub-exponential.
- Except: A quantum computer can efficiently factor arbitrary N.

So recommended key lengths for secure variants of RSA are 2048 bits and higher.

Recall that a KEM creates and sends a random key string to someone whose public key you have.

That key then becomes the key for a private-key encryption system, which is here called a data-encapsulation mechanism (DEM)





Bob

Recall that a KEM creates and sends a random key string to someone whose public key you have.

That key then becomes the key for a private-key encryption system, which is here called a data-encapsulation mechanism (DEM)



Recall that a KEM creates and sends a random key string to someone whose public key you have.

That key then becomes the key for a private-key encryption system, which is here called a data-encapsulation mechanism (DEM)



message m

Recall that a KEM creates and sends a random key string to someone whose public key you have.

That key then becomes the key for a private-key encryption system, which is here called a data-encapsulation mechanism



message m

Recall that a KEM creates and sends a random key string to someone whose public key you have.

That key then becomes the key for a private-key encryption system, which is here called a data-encapsulation mechanism



Recall that a KEM creates and sends a random key string to someone whose public key you have.

That key then becomes the key for a private-key encryption system, which is here called a data-encapsulation mechanism



Recall that a KEM creates and sends a random key string to someone whose public key you have.

That key then becomes the key for a private-key encryption system, which is here called a data-encapsulation mechanism



Recall that a KEM creates and sends a random key string to someone whose public key you have.

That key then becomes the key for a private-key encryption system, which is here called a data-encapsulation mechanism



#### **RSA-based KEM**

Gen: Pick a (public) key derivation function H(x), then as usual for RSA, i.e., generate two random primes p and q which are s bits long. Let N = pq. Choose  $e, d \in \mathbb{Z}_N^*$  s.t.  $ed = 1 \mod \varphi(N)$ . The public key is (N, e) and the private key is (N, d).

Encaps: Choose random x. The ciphertext is  $c = x^e \mod N$  and the key is H(x).

Decaps: Given c and d, compute  $x' = c^d \mod N$ . Then the key is H(x').

As with Diffie-Hellman-based KEM/DEM, this allows us to combine the strengths of public key and private key cryptography.

This KEM is secure given RSA assumption and an assumption on the key derivation function H(x).

### How Do We Distribute Public Keys?

Recall that Diffie-Hellman had a man-in-the-middle attack where Eve pretended to be Bob when talking to Alice and vice-versa.

Public key systems have the same sort of problem at the time of distribution of the public keys:



pub. key e

How does Alice know Bob's public key really comes from Bob and not from Eve? Bob needs some way to authenticate it.

### How Do We Distribute Public Keys?

Recall that Diffie-Hellman had a man-in-the-middle attack where Eve pretended to be Bob when talking to Alice and vice-versa.

Public key systems have the same sort of problem at the time of distribution of the public keys:

Public key systems have the same sort of problem at the time of distribution of the public keys:

Public key systems have the same sort of problem at the time of distribution of the public keys:

Eve

How does Alice know Bob's public key really comes from Bob and not from Eve? Bob needs some way to authenticate it.

Alice

### Chosen Ciphertext Attack on RSA

Plain RSA and Padded RSA are vulnerable to another kind of attack with a stronger threat model, a chosen ciphertext attack:

Suppose Alice sends Bob the ciphertext  $c = \tilde{m}^e \mod N$ .

Eve can easily create  $c' = 2^e c = (2\tilde{m})^e \mod N$ .

Why is that a problem? What if Eve sends  $\mathbf{c}$  to Alice, who decrypts it and then acts on the message assuming it to be from Bob. By observing Alice, Eve may be able to deduce the plaintext corresponding to  $\mathbf{c}$ , namely  $2\tilde{m}$ . This tells her  $\tilde{m}$ .

Authenticating messages will help us deal with this class of attacks as well, by removing Eve's ability to change the message.

### To Do List

- Message authentication and digital signatures to ensure validity of public keys.
- Hash functions to serve as key derivation functions.
- Chosen-ciphertext attacks (CCA) and CCA-security.

Message authentication, digital signatures, and hash functions all have other applications beyond their usefulness for public key cryptography.