
CMSC/Math 456:
Cryptography (Fall 2022)

Lecture 17
Daniel Gottesman

Administrative

This class is being recorded

There will be no problem set this week.

Message Authenticity

This class is being recorded

Suppose you receive this e-mail:

From: Daniel Eric Gottesman <dgottesm@umd.edu>
Subject: Important assignment

Please review the material on this website today.

Daniel Gottesman

What do you do?

It seems a bit suspicious. What if you can’t reach me to ask if it
is real or not?

And if I sent a lot of e-mails like that, it might not even look
suspicious.

Message Authentication

From: Daniel Eric Gottesman <dgottesm@umd.edu>
Subject: Important assignment

Please review the material on this website today.

Daniel Gottesman

This class is being recorded

Message authentication is a cryptographic solution to this
problem: It lets you verify that the message really came from me.

What if the message really did come from me … but it’s been
altered, perhaps by changing the link? Even a one-character
change would point you to a different website which could
contain malware. Asking me won’t help, but message
authentication addresses this too.

New Threat Model

This class is being recorded

Alice Bob

Eve

In the threat model for message authentication, Eve is able to
change messages sent between Alice and Bob and wants Bob to
accept a message that Alice didn’t send.

Now Eve has the ability
not only to read Alice’s
transmissions, but also
to alter them.

Encryption Doesn’t Help

This class is being recorded

Note that encryption by itself doesn’t solve the problem. Eve
can still change the message even if she can’t read it.

One-time pad:

Key:

Message:
00101000101110101010
10111110010011001100

Alteration:

10111110010010001100

Ciphertext: 10010110111101100110

10010110111100100110

Decryption:

Changing the ciphertext produces a
predictable change in the decrypted plaintext.
(The one-time-pad is malleable.)

Message Authentication Code

Alice Bob

Eve
This class is being recorded

Encryption is also not necessary. Instead, Alice appends a tag to
her message to prove its authenticity. Alice and Bob share a
secret key to give them an advantage over Eve.

key k

message m

Message Authentication Code

Alice Bob

Eve
This class is being recorded

Encryption is also not necessary. Instead, Alice appends a tag to
her message to prove its authenticity. Alice and Bob share a
secret key to give them an advantage over Eve.

key k

(m,t)
message m

(m,t)

Message Authentication Code

Alice Bob

Eve
This class is being recorded

Encryption is also not necessary. Instead, Alice appends a tag to
her message to prove its authenticity. Alice and Bob share a
secret key to give them an advantage over Eve.

key k

(m,t)

Attack

message m

(m,t)

Message Authentication Code

Alice Bob

Eve
This class is being recorded

Encryption is also not necessary. Instead, Alice appends a tag to
her message to prove its authenticity. Alice and Bob share a
secret key to give them an advantage over Eve.

key k

(m,t)

Attack

(m’,t’)

message m

(m,t)

Message Authentication Code

Alice Bob

Eve
This class is being recorded

Encryption is also not necessary. Instead, Alice appends a tag to
her message to prove its authenticity. Alice and Bob share a
secret key to give them an advantage over Eve.

key k

(m,t)

Attack

(m’,t’)

No!

message m

(m,t)

MAC Definition

This class is being recorded

Definition: A message authentication code (MAC) is a set of
three probabilistic polynomial-time algorithms (Gen, Mac, Vrfy):

Gen is the key generation algorithm. It takes as input s, the
security parameter, and outputs a private key of
length poly(n).

k ∈ {0,1}*

Mac is the tag-generation algorithm. It takes as input k and a
message and outputs a tag .m ∈ {0,1}* t ∈ {0,1}*
Vrfy is the verification algorithm. It takes as input k and (m,t)
and outputs “valid” or “invalid.”

The MAC is correct if

Vrfy(k, m, Mac(k, m)) = valid

Often Vrfy just runs Mac(k,m) to get a tag t’ and outputs “valid” if
t=t’.

First Try

This class is being recorded

Suppose we let t be the parity of the bits in the message m (i.e.,
the XOR of all bits, 0 if m has an even number of 1s).

m = 001101011 t=1

Vote: Does this work? (Yes/no/unknown)

First Try

This class is being recorded

Suppose we let t be the parity of the bits in the message m (i.e.,
the XOR of all bits, 0 if m has an even number of 1s).

m = 001101011 t=1

Vote: Does this work? (Yes/no/unknown)

Answer: No. It has a number of problems.

First Try

This class is being recorded

Suppose we let t be the parity of the bits in the message m (i.e.,
the XOR of all bits, 0 if m has an even number of 1s).

m = 001101011 t=1

Vote: Does this work? (Yes/no/unknown)

Answer: No. It has a number of problems.

• Eve knows the procedure and can easily make her own tags.

We need to involve a key somehow.

E.g.: m = 000000000, t=0

Second Try

What if we instead have a key k and the tag is ?t = m ⋅ k

m = 001101011
t=0

k = 100101100

This class is being recorded

Vote: Does this work? (Yes/no/unknown)

Second Try

What if we instead have a key k and the tag is ?t = m ⋅ k

m = 001101011
t=0

k = 100101100

This class is being recorded

Vote: Does this work? (Yes/no/unknown)

Answer: Still no.

Second Try

What if we instead have a key k and the tag is ?t = m ⋅ k

m = 001101011
t=0

k = 100101100

This class is being recorded

Vote: Does this work? (Yes/no/unknown)

Answer: Still no.

• The tag space is too small. Eve can just guess the tag with
50% chance of success.

• The all 0’s message always has the same tag, so Eve can
forge that:

m = 000000000, t=0

• With multiple messages, Eve can quickly determine k and
then she can forge messages easily.

Pseudorandom Functions

This class is being recorded

What we would really want is that the tag t = Mac(k,m) is a
random string unrelated to t’ = Mac(k,m’). That way, seeing some
tags won’t help in forging different messages.

That means we want a random function for Mac.

But random functions need a long key and can’t be
computed efficiently. So we will use the next-best thing: a
pseudorandom function.

 for pseudorandom .Mac(k, m) = Fk(m) Fk(m)

E.g.: could be AES.Fk(m)

Note that we don’t need a pseudorandom permutation here, only
a pseudorandom function. Mac does not need to be invertible.

Security of MACs

This class is being recorded

What, precisely, does it mean for a MAC to be secure?

Security of MACs

This class is being recorded

What, precisely, does it mean for a MAC to be secure?

• Eve should be unable, except with negligible probability, to
produce a valid pair (m,t).

Security of MACs

This class is being recorded

What, precisely, does it mean for a MAC to be secure?

• Eve should be unable, except with negligible probability, to
produce a valid pair (m,t).

• Even if she has seen a valid message pair .(m0, t0)

Security of MACs

This class is being recorded

What, precisely, does it mean for a MAC to be secure?

• Eve should be unable, except with negligible probability, to
produce a valid pair (m,t).

• Even if she has seen a valid message pair .(m0, t0)
• Even if she has seen many valid message pairs .(mi, ti)

Security of MACs

This class is being recorded

What, precisely, does it mean for a MAC to be secure?

• Eve should be unable, except with negligible probability, to
produce a valid pair (m,t).

• Even if she has seen a valid message pair .(m0, t0)
• Even if she has seen many valid message pairs .(mi, ti)
• Actually, we should probably let Eve choose which messages

 she’s seen authenticated.mi

Security of MACs

This class is being recorded

What, precisely, does it mean for a MAC to be secure?

• Eve should be unable, except with negligible probability, to
produce a valid pair (m,t).

• Even if she has seen a valid message pair .(m0, t0)
• Even if she has seen many valid message pairs .(mi, ti)
• Actually, we should probably let Eve choose which messages

 she’s seen authenticated.mi
• Except we can’t let her have a valid tag for the message m.

Security of MACs

This class is being recorded

What, precisely, does it mean for a MAC to be secure?

• Eve should be unable, except with negligible probability, to
produce a valid pair (m,t).

• Even if she has seen a valid message pair .(m0, t0)
• Even if she has seen many valid message pairs .(mi, ti)
• Actually, we should probably let Eve choose which messages

 she’s seen authenticated.mi
• Except we can’t let her have a valid tag for the message m.
• But we let her pick the message m after seeing tags for the

other messages.

Security of MACs

This class is being recorded

What, precisely, does it mean for a MAC to be secure?

• Eve should be unable, except with negligible probability, to
produce a valid pair (m,t).

• Even if she has seen a valid message pair .(m0, t0)
• Even if she has seen many valid message pairs .(mi, ti)
• Actually, we should probably let Eve choose which messages

 she’s seen authenticated.mi
• Except we can’t let her have a valid tag for the message m.
• But we let her pick the message m after seeing tags for the

other messages.

Time for another game!

MAC Security Definition
Definition: A MAC (Gen, Mac, Vrfy) with security parameter s is
secure (against an adaptive chosen-message attack) if, for any
polynomial-time attack with oracle access to

, where outputs such that never
queried the oracle for ,

𝒜
Mk(m) = Mac(k, m) 𝒜 (m̂, ̂t) 𝒜

m = m̂

This class is being recorded

Alice Eve

𝒜

s
Mac?Vrfy(k, m̂, ̂t)

Pr(Vrfy(k, m̂, ̂t) = valid) ≤ ϵ(s)
where is a negligible function and the probability is averaged
over k generated by Gen and the randomness used in any of the
functions.

ϵ(s)

Mac

(m̂, ̂t), m̂ ≠ mi

timi

Security of MAC w/ PRF

This class is being recorded

Theorem: If is a pseudorandom function then the
following MAC is secure:

Fk(m)

.Mac(k, m) = Fk(m)
Gen chooses a uniform random bit string k.

Vrfy(k,m,t) outputs “valid” if .Mac(k, m) = t

Proof Idea:

First show that the protocol is secure if we use a random
function f instead of the pseudorandom function.

Then show, via reduction, that if we have an attack against
the protocol with a pseudorandom function, then we can
distinguish from a random function.Fk(m)

Which, by the definition of pseudorandom function,
implies the protocol is secure.

MAC with Random Function

This class is being recorded

Lemma:

.Mac(f, m) = f(m)
Gen chooses a random function f as the key.

Vrfy(f,m,t) outputs “valid” if .Mac(f, m) = t

The following MAC is secure:

Proof:

Eve gets an oracle for f(m). She queries it on inputs .mi

She chooses an . But f(m) is uncorrelated with f(m’)
for . In particular, is a random string
uncorrelated with all and all of Eve’s other data.
Therefore, the probability that her attack outputs is

m̂ ≠ mi
m ≠ m′ f(m̂)

f(mi)
̂t = f(m̂)

Pr(𝒜f = (m̂, ̂t = f(m̂))) = 2−s

where f has outputs of length s bits.

Reduction to Pseudorandom Function

n 𝒪

O = Fk(r) or f(r)

Alice Eve

This class is being recorded

Virtual Alice Virtual Eve

Virtual MAC game

The reduction runs a virtual MAC protocol
using the pseudorandom or random function
as the Mac function.

The reduction can
be run in
polynomial time.

Reduction to Pseudorandom Function

n 𝒪

O = Fk(r) or f(r)

Alice Eve

This class is being recorded

Virtual Alice Virtual Eve

Virtual MAC game

𝒪

The reduction runs a virtual MAC protocol
using the pseudorandom or random function
as the Mac function.

The reduction can
be run in
polynomial time.

Reduction to Pseudorandom Function

n 𝒪

O = Fk(r) or f(r)

Alice Eve

This class is being recorded

Virtual Alice Virtual Eve

Virtual MAC game

s
𝒪

𝒪

The reduction runs a virtual MAC protocol
using the pseudorandom or random function
as the Mac function.

The reduction can
be run in
polynomial time.

Reduction to Pseudorandom Function

n 𝒪

O = Fk(r) or f(r)

Alice Eve

This class is being recorded

Virtual Alice Virtual Eve(m̂, ̂t)

Virtual MAC game

𝒜

timi

𝒪

s
𝒪

𝒪

The reduction runs a virtual MAC protocol
using the pseudorandom or random function
as the Mac function.

The reduction can
be run in
polynomial time.

Reduction to Pseudorandom Function

n 𝒪

O = Fk(r) or f(r)

Alice Eve

This class is being recorded

Virtual Alice Virtual Eve(m̂, ̂t)

Virtual MAC game

𝒜

timi

𝒪

s
𝒪

𝒪

The reduction runs a virtual MAC protocol
using the pseudorandom or random function
as the Mac function.

?Vrfy(𝒪, m̂, ̂t)The reduction can
be run in
polynomial time.

Reduction to Pseudorandom Function

n 𝒪

O = Fk(r) or f(r)

Alice Eve
𝒜′ (x)

This class is being recorded

Virtual Alice Virtual Eve(m̂, ̂t)

Virtual MAC game

Did V.E. succeed?
If so, .
Else, .

𝒜′ (x) = 1
𝒜′ (x) = 0

𝒜

timi

𝒪

s
𝒪

𝒪

The reduction runs a virtual MAC protocol
using the pseudorandom or random function
as the Mac function.

?Vrfy(𝒪, m̂, ̂t)The reduction can
be run in
polynomial time.

Completing the Proof

This class is being recorded

In this reduction, the real Eve outputs iff virtual Eve
succeeds in outputting a correct message-tag pair .

𝒜′ = 1
(m̂, ̂t)

Completing the Proof

This class is being recorded

In this reduction, the real Eve outputs iff virtual Eve
succeeds in outputting a correct message-tag pair .

𝒜′ = 1
(m̂, ̂t)

• If the function is random, this happens with probability
by the lemma. That is,

2−s

Pr(𝒜′ f = 1) = 2−s

Completing the Proof

This class is being recorded

In this reduction, the real Eve outputs iff virtual Eve
succeeds in outputting a correct message-tag pair .

𝒜′ = 1
(m̂, ̂t)

• If the function is random, this happens with probability
by the lemma. That is,

2−s

Pr(𝒜′ f = 1) = 2−s

• If the function is pseudorandom, virtual Eve succeeds with
probability :Pr(Vrfy(k, m̂, ̂t) = valid)

Pr(𝒜′ Fk = 1) = Pr(Vrfy(k, m̂, ̂t) = valid)

Completing the Proof

This class is being recorded

In this reduction, the real Eve outputs iff virtual Eve
succeeds in outputting a correct message-tag pair .

𝒜′ = 1
(m̂, ̂t)

• If the function is random, this happens with probability
by the lemma. That is,

2−s

Pr(𝒜′ f = 1) = 2−s

• If the function is pseudorandom, virtual Eve succeeds with
probability :Pr(Vrfy(k, m̂, ̂t) = valid)

Pr(𝒜′ Fk = 1) = Pr(Vrfy(k, m̂, ̂t) = valid)
Thus,

|Pr(𝒜′ Fk = 1) − Pr(𝒜′ f = 1) | = |Pr(Vrfy(k, m̂, ̂t) = valid) − 2−s |

Completing the Proof

This class is being recorded

In this reduction, the real Eve outputs iff virtual Eve
succeeds in outputting a correct message-tag pair .

𝒜′ = 1
(m̂, ̂t)

• If the function is random, this happens with probability
by the lemma. That is,

2−s

Pr(𝒜′ f = 1) = 2−s

• If the function is pseudorandom, virtual Eve succeeds with
probability :Pr(Vrfy(k, m̂, ̂t) = valid)

Pr(𝒜′ Fk = 1) = Pr(Vrfy(k, m̂, ̂t) = valid)
Thus,

|Pr(𝒜′ Fk = 1) − Pr(𝒜′ f = 1) | = |Pr(Vrfy(k, m̂, ̂t) = valid) − 2−s |

But, by the definition of a pseudorandom function,

|Pr(𝒜′ Fk = 1) − Pr(𝒜′ f = 1) | < ϵ(s)

Completing the Proof

This class is being recorded

In this reduction, the real Eve outputs iff virtual Eve
succeeds in outputting a correct message-tag pair .

𝒜′ = 1
(m̂, ̂t)

• If the function is random, this happens with probability
by the lemma. That is,

2−s

Pr(𝒜′ f = 1) = 2−s

• If the function is pseudorandom, virtual Eve succeeds with
probability :Pr(Vrfy(k, m̂, ̂t) = valid)

Pr(𝒜′ Fk = 1) = Pr(Vrfy(k, m̂, ̂t) = valid)
Thus,

|Pr(𝒜′ Fk = 1) − Pr(𝒜′ f = 1) | = |Pr(Vrfy(k, m̂, ̂t) = valid) − 2−s |

But, by the definition of a pseudorandom function,

|Pr(𝒜′ Fk = 1) − Pr(𝒜′ f = 1) | < ϵ(s)

so Pr(Vrfy(k, m̂, ̂t) = valid) < 2−s + ϵ(s) = ϵ′ (s)

Longer Messages

This class is being recorded

Standardized block ciphers have a fixed size. So how do we
authenticate longer messages?

Break m up into blocks: and authenticate
each one separately:

m = m0∥m1∥m2∥ …
(m0, t0), (m1, t1), (m2, t2), …

Vote: Secure? (Yes/No/Unknown)

Longer Messages

This class is being recorded

Standardized block ciphers have a fixed size. So how do we
authenticate longer messages?

Break m up into blocks: and authenticate
each one separately:

m = m0∥m1∥m2∥ …
(m0, t0), (m1, t1), (m2, t2), …

Vote: Secure? (Yes/No/Unknown)

Answer: No. Eve has various attacks.

• Could change the order: is a
valid set of tags for the message

• Could truncate: by itself is a valid tag for the
message .

• Could switch blocks from multiple messages: Given
and , she could send ,
which is a valid set of tags for This is
different from either of the original messages.

(m2, t2), (m1, t1), (m0, t0), …
m2∥m1∥m0∥ …

(m0, t0)
m0

(mi, ti)
(m′ i, t′ i) (m0, t0), (m′ 1, t′ 1), (m2, t2), …

m0∥m′ 1∥m2∥ …

CBC Mode for MACs

Fk Fk Fk

m1 m2 m3
IV

t1IVTag: t2 t3

This class is being recorded

What about CBC mode for MACs?

Vote: Secure? (Yes/No/Unknown)

CBC Doesn’t Work for MACs

Fk Fk Fk

m1 m2 m3
IV

t1IVTag: t2 t3
Not secure. Eve can change the IV and with it to leave the
tags the same:

m1

E.g.: IV = 010100, , so m1 = 110000 IV ⊕ m1 = 100100
But if IV = 110001, , then it is still true that

, so the message has the
same tag as the original message .

m̂1 = 010101
IV ⊕ m̂1 = 100100 m̂1∥m2∥m3

m1∥m2∥m3

This class is being recorded

CBC for MACs with no IV

This class is being recorded

The IV is causing this problem since Eve can change it and
together. But we don’t need it: For encryption, we needed
randomness to ensure CPA security, but MACs don’t need that.

m1

Fk Fk Fk

m1 m2 m3

t1Tag: t2 t3

Vote: Secure? (Yes/No/Unknown)

It Still Doesn’t Work

Fk Fk Fk

m1 m2 m3

t1Tag: t2 t3

This class is being recorded

Not secure. Eve can still combine messages to make a new one:

E.g.: Given and
, Eve knows .

(m1, m2, …), (t1, t2, …)
(m′ 1, m′ 2, …), (t′ 1, t′ 2, …) t′ 2 = Fk(t′ 1 ⊕ m′ 2)
Let . Then , which
means and the pair

m′ ′ 2 = t1 ⊕ t′ 1 ⊕ m′ 2 t1 ⊕ m′ ′ 2 = t′ 1 ⊕ m′ 2
Fk(t1 ⊕ m2) = t′ 2

(m1, m′ ′ 2, m′ 3, …), (t1, t′ 2, t′ 3, …) is valid.

Another Try

This class is being recorded

Fk Fk Fk

m1 m2 m3

Tag: t3

The problem seems to be the intermediate tags give Eve
too much information. Maybe we should get rid of them:

t1, t2

Only output the final tag.

Vote: Secure? (Yes/No/Unknown)

Almost There

This class is being recorded

Fk Fk Fk

m1 m2 m3

Tag: t3

Secure only if length fixed. Otherwise, Eve can get the tags , ,
etc. by querying the oracle for messages , then , etc.

t1 t2
m1 m1∥m2

Then Eve can proceed as before.

CBC with Length Included

This class is being recorded

Fk Fk Fk

m1 m2 m3

Tag: t3

Fk

length

We can authenticate the length as the first part of the message.

Vote: Secure? (Yes/No/Unknown)

CBC with Length Included

This class is being recorded

Fk Fk Fk

m1 m2 m3

Tag: t3

Fk

length

We can authenticate the length as the first part of the message.

Vote: Secure? (Yes/No/Unknown)

Yes! Finally.

