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Administrative

This class is being recorded

There will be no problem set this week.



Message Authenticity

This class is being recorded

Suppose you receive this e-mail:

From: Daniel Eric Gottesman <dgottesm@umd.edu>
Subject: Important assignment

Please review the material on this website today.

Daniel Gottesman

What do you do?

It seems a bit suspicious.  What if you can’t reach me to ask if it 
is real or not?

And if I sent a lot of e-mails like that, it might not even look 
suspicious.



Message Authentication

From: Daniel Eric Gottesman <dgottesm@umd.edu>
Subject: Important assignment

Please review the material on this website today.

Daniel Gottesman
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Message authentication is a cryptographic solution to this 
problem: It lets you verify that the message really came from me.

What if the message really did come from me … but it’s been 
altered, perhaps by changing the link?  Even a one-character 
change would point you to a different website which could 
contain malware.  Asking me won’t help, but message 
authentication addresses this too.



New Threat Model
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Alice Bob

Eve

In the threat model for message authentication, Eve is able to 
change messages sent between Alice and Bob and wants Bob to 
accept a message that Alice didn’t send.

Now Eve has the ability 
not only to read Alice’s 
transmissions, but also 
to alter them.



Encryption Doesn’t Help
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Note that encryption by itself doesn’t solve the problem.  Eve 
can still change the message even if she can’t read it.

One-time pad:

Key:

Message:
00101000101110101010
10111110010011001100

Alteration:

10111110010010001100

Ciphertext: 10010110111101100110

10010110111100100110

Decryption:

Changing the ciphertext produces a 
predictable change in the decrypted plaintext.  
(The one-time-pad is malleable.)



Message Authentication Code

Alice Bob

Eve
This class is being recorded

Encryption is also not necessary.  Instead, Alice appends a tag to 
her message to prove its authenticity.  Alice and Bob share a 
secret key to give them an advantage over Eve.

key k

message m
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Message Authentication Code

Alice Bob

Eve
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Encryption is also not necessary.  Instead, Alice appends a tag to 
her message to prove its authenticity.  Alice and Bob share a 
secret key to give them an advantage over Eve.

key k

(m,t)

Attack

(m’,t’)

No!

message m

(m,t)



MAC Definition
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Definition: A message authentication code (MAC) is a set of 
three probabilistic polynomial-time algorithms (Gen, Mac, Vrfy):

Gen is the key generation algorithm.  It takes as input s, the 
security parameter, and outputs a private key  of 
length poly(n).

k ∈ {0,1}*

Mac is the tag-generation algorithm.  It takes as input k and a 
message  and outputs a tag .m ∈ {0,1}* t ∈ {0,1}*
Vrfy is the verification algorithm.  It takes as input k and (m,t) 
and outputs “valid” or “invalid.” 

The MAC is correct if

Vrfy(k, m, Mac(k, m)) = valid

Often Vrfy just runs Mac(k,m) to get a tag t’ and outputs “valid” if 
t=t’.



First Try
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Suppose we let t be the parity of the bits in the message m (i.e., 
the XOR of all bits, 0 if m has an even number of 1s).

m = 001101011 t=1

Vote: Does this work? (Yes/no/unknown)
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First Try
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Suppose we let t be the parity of the bits in the message m (i.e., 
the XOR of all bits, 0 if m has an even number of 1s).

m = 001101011 t=1

Vote: Does this work? (Yes/no/unknown)

Answer: No.  It has a number of problems.

• Eve knows the procedure and can easily make her own tags.

We need to involve a key somehow.

E.g.: m = 000000000, t=0



Second Try

What if we instead have a key k and the tag is ?t = m ⋅ k

m = 001101011
t=0

k = 100101100
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Vote: Does this work? (Yes/no/unknown)



Second Try

What if we instead have a key k and the tag is ?t = m ⋅ k

m = 001101011
t=0

k = 100101100
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Vote: Does this work? (Yes/no/unknown)

Answer: Still no.



Second Try

What if we instead have a key k and the tag is ?t = m ⋅ k

m = 001101011
t=0

k = 100101100

This class is being recorded

Vote: Does this work? (Yes/no/unknown)

Answer: Still no.

• The tag space is too small.  Eve can just guess the tag with 
50% chance of success.

• The all 0’s message always has the same tag, so Eve can 
forge that:

m = 000000000, t=0

• With multiple messages, Eve can quickly determine k and 
then she can forge messages easily.



Pseudorandom Functions
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What we would really want is that the tag t = Mac(k,m) is a 
random string unrelated to t’ = Mac(k,m’).  That way, seeing some 
tags won’t help in forging different messages.

That means we want a random function for Mac.

But random functions need a long key and can’t be 
computed efficiently.  So we will use the next-best thing: a 
pseudorandom function.

 for pseudorandom .Mac(k, m) = Fk(m) Fk(m)

E.g.:  could be AES.Fk(m)

Note that we don’t need a pseudorandom permutation here, only 
a pseudorandom function.  Mac does not need to be invertible.
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Security of MACs
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What, precisely, does it mean for a MAC to be secure?

• Eve should be unable, except with negligible probability, to 
produce a valid pair (m,t).

• Even if she has seen a valid message pair .(m0, t0)
• Even if she has seen many valid message pairs .(mi, ti)
• Actually, we should probably let Eve choose which messages 

 she’s seen authenticated.mi
• Except we can’t let her have a valid tag for the message m.
• But we let her pick the message m after seeing tags for the 

other messages.

Time for another game!



MAC Security Definition
Definition: A MAC (Gen, Mac, Vrfy) with security parameter s is 
secure (against an adaptive chosen-message attack) if, for any 
polynomial-time attack  with oracle access to 

, where  outputs  such that  never 
queried the oracle for ,

𝒜
Mk(m) = Mac(k, m) 𝒜 (m̂, ̂t ) 𝒜

m = m̂

This class is being recorded

Alice Eve

𝒜

s
Mac?Vrfy(k, m̂, ̂t )

Pr(Vrfy(k, m̂, ̂t ) = valid) ≤ ϵ(s)
where  is a negligible function and the probability is averaged 
over k generated by Gen and the randomness used in any of the 
functions.

ϵ(s)

Mac

(m̂, ̂t ), m̂ ≠ mi

timi



Security of MAC w/ PRF
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Theorem: If  is a pseudorandom function then the 
following MAC is secure:

Fk(m)

.Mac(k, m) = Fk(m)
Gen chooses a uniform random bit string k.

Vrfy(k,m,t) outputs “valid” if .Mac(k, m) = t

Proof Idea:

First show that the protocol is secure if we use a random 
function f instead of the pseudorandom function.

Then show, via reduction, that if we have an attack against 
the protocol with a pseudorandom function, then we can 
distinguish  from a random function.Fk(m)

Which, by the definition of pseudorandom function, 
implies the protocol is secure.



MAC with Random Function
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Lemma: 

.Mac( f, m) = f(m)
Gen chooses a random function f as the key.

Vrfy(f,m,t) outputs “valid” if .Mac( f, m) = t

The following MAC is secure:

Proof:

Eve gets an oracle for f(m).  She queries it on inputs .mi

She chooses an .  But f(m) is uncorrelated with f(m’) 
for .  In particular,  is a random string 
uncorrelated with all  and all of Eve’s other data.  
Therefore, the probability that her attack outputs  is

m̂ ≠ mi
m ≠ m′ f(m̂)

f(mi)
̂t = f(m̂)

Pr(𝒜f = (m̂, ̂t = f(m̂))) = 2−s

where f has outputs of length s bits.



Reduction to Pseudorandom Function

n 𝒪

O = Fk(r) or f(r)

Alice Eve
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Virtual Alice Virtual Eve

Virtual MAC game

The reduction runs a virtual MAC protocol 
using the pseudorandom or random function 
as the Mac function.

The reduction can 
be run in 
polynomial time.
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Virtual Alice Virtual Eve(m̂, ̂t )

Virtual MAC game

𝒜
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𝒪

s
𝒪
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The reduction runs a virtual MAC protocol 
using the pseudorandom or random function 
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Reduction to Pseudorandom Function

n 𝒪

O = Fk(r) or f(r)

Alice Eve
𝒜′ (x)
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Virtual Alice Virtual Eve(m̂, ̂t )

Virtual MAC game

Did V.E. succeed?  
If so, .  
Else, .

𝒜′ (x) = 1
𝒜′ (x) = 0

𝒜

timi

𝒪

s
𝒪

𝒪

The reduction runs a virtual MAC protocol 
using the pseudorandom or random function 
as the Mac function.

?Vrfy(𝒪, m̂, ̂t )The reduction can 
be run in 
polynomial time.
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In this reduction, the real Eve outputs  iff virtual Eve 
succeeds in outputting a correct message-tag pair .

𝒜′ = 1
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• If the function is random, this happens with probability  
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Completing the Proof
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In this reduction, the real Eve outputs  iff virtual Eve 
succeeds in outputting a correct message-tag pair .

𝒜′ = 1
(m̂, ̂t )

• If the function is random, this happens with probability  
by the lemma.  That is, 

2−s

Pr(𝒜′ f = 1) = 2−s

• If the function is pseudorandom, virtual Eve succeeds with 
probability :Pr(Vrfy(k, m̂, ̂t ) = valid)

Pr(𝒜′ Fk = 1) = Pr(Vrfy(k, m̂, ̂t ) = valid)
Thus, 

|Pr(𝒜′ Fk = 1) − Pr(𝒜′ f = 1) | = |Pr(Vrfy(k, m̂, ̂t ) = valid) − 2−s |

But, by the definition of a pseudorandom function,

|Pr(𝒜′ Fk = 1) − Pr(𝒜′ f = 1) | < ϵ(s)

so Pr(Vrfy(k, m̂, ̂t ) = valid) < 2−s + ϵ(s) = ϵ′ (s)
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Standardized block ciphers have a fixed size.  So how do we 
authenticate longer messages?

Break m up into blocks:  and authenticate 
each one separately: 

m = m0∥m1∥m2∥ …
(m0, t0), (m1, t1), (m2, t2), …

Vote: Secure?  (Yes/No/Unknown)



Longer Messages
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Standardized block ciphers have a fixed size.  So how do we 
authenticate longer messages?

Break m up into blocks:  and authenticate 
each one separately: 

m = m0∥m1∥m2∥ …
(m0, t0), (m1, t1), (m2, t2), …

Vote: Secure?  (Yes/No/Unknown)

Answer: No.  Eve has various attacks.

• Could change the order:  is a 
valid set of tags for the message 

• Could truncate:   by itself is a valid tag for the 
message .

• Could switch blocks from multiple messages: Given  
and , she could send , 
which is a valid set of tags for   This is 
different from either of the original messages.

(m2, t2), (m1, t1), (m0, t0), …
m2∥m1∥m0∥ …

(m0, t0)
m0

(mi, ti)
(m′ i, t′ i) (m0, t0), (m′ 1, t′ 1), (m2, t2), …

m0∥m′ 1∥m2∥ …



CBC Mode for MACs

Fk Fk Fk

m1 m2 m3
IV

t1IVTag: t2 t3

This class is being recorded

What about CBC mode for MACs?

Vote: Secure? (Yes/No/Unknown)



CBC Doesn’t Work for MACs

Fk Fk Fk

m1 m2 m3
IV

t1IVTag: t2 t3
Not secure.  Eve can change the IV and  with it to leave the 
tags the same:

m1

E.g.: IV = 010100, , so m1 = 110000 IV ⊕ m1 = 100100
But if IV = 110001, , then it is still true that 

, so the message  has the 
same tag as the original message .

m̂1 = 010101
IV ⊕ m̂1 = 100100 m̂1∥m2∥m3

m1∥m2∥m3

This class is being recorded



CBC for MACs with no IV
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The IV is causing this problem since Eve can change it and  
together.  But we don’t need it: For encryption, we needed 
randomness to ensure CPA security, but MACs don’t need that.

m1

Fk Fk Fk

m1 m2 m3

t1Tag: t2 t3

Vote: Secure? (Yes/No/Unknown)



It Still Doesn’t Work

Fk Fk Fk

m1 m2 m3

t1Tag: t2 t3

This class is being recorded

Not secure.  Eve can still combine messages to make a new one:

E.g.: Given  and 
, Eve knows .

(m1, m2, …), (t1, t2, …)
(m′ 1, m′ 2, …), (t′ 1, t′ 2, …) t′ 2 = Fk(t′ 1 ⊕ m′ 2)
Let .  Then , which 
means  and the pair

m′ ′ 2 = t1 ⊕ t′ 1 ⊕ m′ 2 t1 ⊕ m′ ′ 2 = t′ 1 ⊕ m′ 2
Fk(t1 ⊕ m2) = t′ 2

(m1, m′ ′ 2, m′ 3, …), (t1, t′ 2, t′ 3, …) is valid.



Another Try
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Fk Fk Fk

m1 m2 m3

Tag: t3

The problem seems to be the intermediate tags  give Eve 
too much information.  Maybe we should get rid of them:

t1, t2

Only output the final tag.

Vote: Secure? (Yes/No/Unknown)



Almost There
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Fk Fk Fk

m1 m2 m3

Tag: t3

Secure only if length fixed.  Otherwise, Eve can get the tags , , 
etc. by querying the oracle for messages , then , etc.

t1 t2
m1 m1∥m2

Then Eve can proceed as before.



CBC with Length Included
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Fk Fk Fk

m1 m2 m3

Tag: t3

Fk

length

We can authenticate the length as the first part of the message.

Vote: Secure? (Yes/No/Unknown)



CBC with Length Included
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Fk Fk Fk

m1 m2 m3

Tag: t3

Fk

length

We can authenticate the length as the first part of the message.

Vote: Secure? (Yes/No/Unknown)

Yes! Finally.




