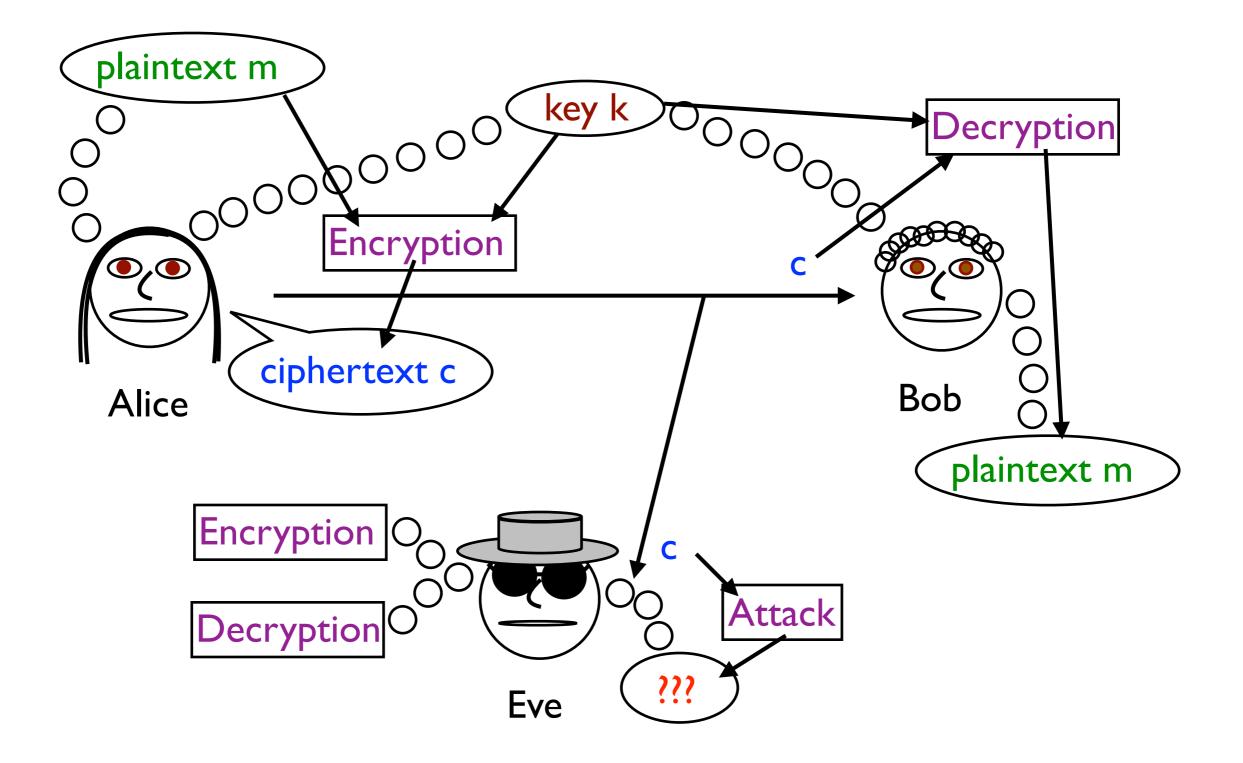
CMSC/Math 456: Cryptography (Fall 2022) Lecture 2 Daniel Gottesman Reminder: this class is being recorded.

The first problem set has been delayed because Gradescope is not active yet.

The textbook is on reserve in the library.

Reminder: this class is being recorded.


The first problem set has been delayed because Gradescope is not active yet.

The textbook is on reserve in the library.

Also, an addendum to lecture 1:

The substitution cipher was in fact used historically for a long time even after it was known how to break it. People tried modifying it in many different ways to make it harder to break, but skilled cryptoanalysts were generally able to defeat these modifications as well.

Alice and Bob vs. Eve

Shift Cipher

The shift cipher is a special case of a substitution cipher.

```
Key: random number k from 0, ..., 25
```

Encrypt: shift each letter in the plaintext m forward by k spaces in the alphabet

Decrypt: shift each letter in the ciphertext c backwards by k spaces in the alphabet

Example: k=3

m = "theti meisf iveoc lock"

c = "WKHWL PHLVI LYHRF ORFN"

This is easy to break by brute force: try all possible key values.

The advantage over the general substitution cipher is the key is smaller and the encryption/decryption is easier.

The Vigenère Cipher

The weakness of the substitution cipher is that some letters are more common than others, creating a pattern which is still visible in the ciphertext. But what if we use a different shift rule for each letter?

Key: List k of s numbers $\{k_i\} \in \{0,...,25\}$

Encrypt: For the letter in position $j = i \mod s$ of plaintext m, shift the letter forward by k_i positions. Decrypt: For the letter in position $j = i \mod s$ of ciphertext

c, shift the letter backwards by k_i positions.

The key is often specified by a word or phrase, translating k_i into a letter (0 = a, 1 = b, etc.) This makes it easier to remember.

The number of possible keys is 26^s , too many for a brute force attack, even for modest s. (Compare to the substitution cipher, which has $26! \approx 4 \times 10^{26}$ possible keys; 26^s is larger for s > 19.)

An Example of Vigenère

ACYWS	YBILX	VPYLL	HHCKX	OSKMI	ZHCGR	DVYLL	LFNAW	UCVDI	YWHLL	LACFH
ACMMJ	MSNZI	ZZCFK	ZOHVE	YFIOW	VTIMX	YOAWS	BGZGV	AIHWS	YHILE	RSUJQ
ZOASM	ZHUKI	HCZLV	VIVDI	ZOHVF	FCJHS	ZWHYI	URNZI	THIVM	LHIKP	LSJFS
TCLWE	URVQE	ZZYWT	ACMSC	DSYFH	AVYZI	HFNSG	OSUFH	AVYLL	VLMSR	KBULY
YOFKL	VQEKX	OONXP	LGBAW	OSCJX	VHCKE	JCHKY	TAULM	VBXWZ	VINDC	ACVWA
PGBWH	ACXAI	ACMDI	LDNGW	SSYHT	LFWZE	UQYLS	KFYSQ	HMYLL	LFYKX	OSLMF
MCLAR	AVULW	SSYHS	MRYSX	OKBSX	KFYSQ	ZAUQG	VAYOL	LBQWL	HJYKL	BTZDI
KCZXX	OWMES	YHUDG	VWFEY	ZHAAZ	LUMHE	BGYLL	LFYKX	OSLWW	WSWLX	OONEE
RSMUE	SOGAX	FCZKS	SCHYP	PTYXS	YKBGA	VIFVF	LOLLL	LKBAT	ZOHVW	JCLFW
VTNAQ	LHBWS	WDLWW	ZCLKA	YCHYX	OSJJS	BRGSR	ZQIFX	BAYDC	AVYHE	UUMJG
KWMHM	ZSXDS	CSNZI	SOQKH	LZUQX	OSCFW	VZYFG	LCZGJ	MWWWE	URNZI	ZDOJR
ZHBSX	WONAI	UHGWV	PHIXX	OIHOS	YHBQX	HYYKA	OSHZI	OWGKI	STGAK	OHBAW
XICWX	BGGSO	LKCLL	HPUJI	ICXCM	UKBGA	VIFVJ	HFXWP	ZPYSV	ACAJY	UHUFH
ZKYSX	BBXWV	HKYSV	FZCXI	IINLL	HHNZI	KFYSH	VTMGQ	LHBAR	NOZLI	YRYSX
OHBWY	URCKG	VJYJI	KQIMR	AFSXV	VAQZS	ZSVGY	YBHGX	YOPWP	SSLJI	AILFW
WITRP	LGNZI	DWFDE	URGSO	LGOKV	HHBWV	ISUJX	OCMWM	SZMOI	OOPWX	OOHXP
FHIGX	OSLKX	OONOI	RBIOR	VHIXX	OIMUS	UGWAI	UQYVS	LGGSO	LQIOE	YRMGJ
BGUDP	HBXLL	BGNZI	UONAZ	LVOWS	MFYKS	SINAS	UWMKM	JYFAI	KCYJA	PHBLL
LDUDI	JOMLS	MHBGY	NVNSR	KSHLI	YDLAW	LGIXK	YSULT	PHWZE	URGGQ	LBNOM
AVNZM	ZFYYE	YRNZI	PFWMV	YSHLW	AILFE	DFSSR	KZIKI	AVYFE	TSIXE	JHCGR
ZCZLC	VIHGA	AVYXE	PFIHL	LZCSR	FAJZM	UHBQS	YWMGR	ZBYSP	SASKM	UGLWQ
LAVWV	K									

Letter Frequencies

Ciphertext

Letter	# times	%
L	84	7.5%
S	79	7.0%
Н	68	6.0%
Y	66	5.9%
	64	5.7%
W	58	5.2%
А	55	4.9%
0	52	4.6%
Z	52	4.6%
V	51	4.5%
Х	46	4.1%
G	43	3.8%
С	42	3.7%
F	42	3.7%
K	39	3.5%
М	38	3.4%
U	35	3.1%
В	34	3.0%
R	28	2.5%
J	25	2.2%
Ν	25	2.2%
E	23	2.0%
Р	21	1.9%
D	19	1.7%
Q	19	1.7%
Т	16	1.4%

English					
Letter	%				
е	12.7%				
t	9.1%				
а	8.2%				
0	7.5%				
i	7.0%				
n	6.7%				
S	6.3%				
h	6.1%				
r	6.0%				
d	4.3%				
I	4.0%				
С	2.8%				
u	2.8%				
m	2.4%				
W	2.4%				
f	2.2%				
g	2.0%				
У	2.0%				
р	1.9%				
b	1.5%				
V	1.0%				
k	0.8%				
j	0.2%				
Χ	0.2%				
q					
Z	0.1%				

1. 1

The frequency distribution of ciphertext letters is much flatter than English.

How can we quantify the "flatness" of a distribution?

Calculate $\sum_{i=0}^{25} p_i^2$.

This quantity (related to the Rényi entropy) quantifies flatness: It is larger for less flat distributions.

English: 0.065

Ciphertext: 0.045

Uniform distribution: 0.038

Security of Vigenère

The Vigenère cipher was long believed to be unbreakable and was used for hundreds of years.

In the example, the letter frequency is closer to uniform, although still not quite there. We would be closer with a longer key.

Security of Vigenère

The Vigenère cipher was long believed to be unbreakable and was used for hundreds of years.

In the example, the letter frequency is closer to uniform, although still not quite there. We would be closer with a longer key.

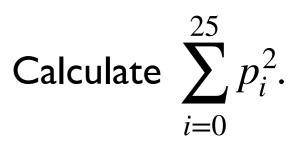
However, there is still a more clever attack based on frequency analysis.

Consider the pattern of shifts. It repeats every s steps. For instance if s=3, the shifts are:

$$+k_0 + k_1 + k_2 + k_0 + k_1 + k_2 + k_0 + k_1 + k_2 + k_0 + k_1 + k_2$$

If we look at every sth letter in the ciphertext, they will all be shifted by the same amount and thus should have a distribution similar to that in English (or the source language, if not English). This class is being recorded

What if the Key Has Length 3?


Let us look at the frequency if we take every 3rd letter:

ACYWS YBLIN VIYLL HHCKY OSKII ZHCGR DYYLL IFIW UCVDI YWHLL IACI'H
ACMAJ MENZI ZZCIK ZOHVE YFIOW VTINX YOAVS BGZGY AINVS YHILE REUJO
ZOASM ZHUKI HCZLV VIVDI ZOHVF FCJHS ZWHYI UHNZI THIVM IHIKP LSJFS
TCIWE URVOE ZIYNT ACMSC ISYTH AVYLI HENSG OSUTH AVYLL VLMSR KBULY
YOFKL VDEKX OONXP LGBAW OSCJX VHCKE JCHKY TAULM VBXVZ VINDC ACVWA
IGBVH ACXAI ACNDI IDNGW SSYHT LIWZE UQYIS KEYSQ HAYLL IFYKX OSLAF
MCIAR AVULW SSYNS MRYSK OKBSX KFYSQ ZAUQG VAYOL LEQVL HUYKL ETREI
KCZKX OWNES YHUDG VWFEY ZHAAL IUNHE BCYLL LFYKX OSLWW WSWLX ODNEE
RSMUE SOGAX FCZKS SCHYP PTYKS YKEGA VIFVF LOLLL LKEAT ZOHVW JCLFW
VINAQ IHBWS WOLWW ZCIKA YCHYX OSJJS BRGSR ZQIIX BAYDC AVYHE UUNIG
KVIMHM ZSXDS CSNXI SOQKH LVQX OSCHW VYYFG LCZGJ NWWVE URNVI ZDOJR
THEST WONAI UHOWV PHILLY OTHOS THEOR HYPER OSHLI OWOKI STEAK OHBAW
XICWK BGGSO LKCLL HPUJI ICKCM UKBGA VIEVJ HEKVP ZEYSV ACAJY UHJEH
ZKYSX BBXW/ HKYSV FZCKI IINLL HHNZI KFYSH VINGO IHBAR NOZLI YRYSX
OHBWY URCKG VIYJE KOLMR AFSKV VAQZS ZSVGY YBHGX YDEWP SSLJI AILFW
WITRP IGNTI DWFDE URGSO IGDIV HHBWV ISUJX OCHVM SZMOI ODEWX OCHXP
FHIGX OSIKK OONOI REIDR VHIXX OINUS UGWAI UDYVS IGGSO LOIDE YRNGJ
BGUDP HEXLL BGNZI VONAZ LVOWS MFYKS SINAS UWMKM JYFAI KCYJA PHBLL
LDUDI JOHLS MHBGY NVNSK KSHLI YDLAW LGIXK YSULT PHWZE URGGO IBYOM
AVNZM ZFYYE YRNZI PIWMV YSHLW AILFE DFSSR KZIKI AVNE TSIKE JHOGR
CLIC VIHGA AVIXE PFIIL LICER FAJZI UHBOS YVMER ZBYSP SASIM UGLVQ
LATWV K

Frequency of Every 3rd Letter

E١	Full		
Letter	# times	%	Letter
Н	31	8.0%	L
S	29	7.5%	S
Y	28	7.2%	Н
	24	6.2%	Y
L	24	6.2%	l
W	22	5.7%	W
А	18	4.6%	А
0	17	4.4%	0
Z	17	4.4%	Z
G	16	4.1%	V
V	16	4.1%	Х
K	15	3.9%	G
В	14	3.6%	С
М	14	3.6%	F
Х	14	3.6%	K
С	12	3.1%	М
F	11	2.8%	U
J	11	2.8%	В
Е	9	2.3%	R
Q	8	2.1%	J
Т	7	1.8%	Ν
U	7	1.8%	E
Ν	6	1.6%	Р
Р	6	1.6%	D
R	6	1.6%	Q
D	5	1.3%	Т

Full	Ciphe	Eng	lish	
Letter	# times	%	Letter	%
L	84	7.5%	е	12.7%
S	79	7.0%	t	9.1%
Н	68	6.0%	а	8.2%
Y	66	5.9%	0	7.5%
	64	5.7%	i	7.0%
W	58	5.2%	n	6.7%
Α	55	4.9%	S	6.3%
0	52	4.6%	h	6.1%
Z	52	4.6%	r	6.0%
V	51	4.5%	d	4.3%
Х	46	4.1%	I	4.0%
G	43	3.8%	С	2.8%
С	42	3.7%	u	2.8%
F	42	3.7%	m	2.4%
K	39	3.5%	W	2.4%
М	38	3.4%	f	2.2%
U	35	3.1%	g	2.0%
В	34	3.0%	У	2.0%
R	28	2.5%	р	1.9%
J	25	2.2%	b	1.5%
Ν	25	2.2%	V	1.0%
E	23	2.0%	k	0.8%
Р	21	1.9%	j	0.2%
D	19	1.7%	Х	0.2%
Q	19	1.7%	q	0.1%
Т	16	1.4%	Z	0.1%

English: 0.065 Ciphertext: 0.045 **Every 3rd letter:** 0.048

Seems more like the full ciphertext; this is not the right key length.

What if the Key Has Length 5?

Then every 5th letter is shifted by the same amount:

Frequency of Every 5th Letter

Every 5th					
# times	%	Lette			
28	12.1%	L			
22	9.5%	S			
22	9.5%	Н			
19	8.2%	Y			
19	8.2%	I			
18	7.8%	W			
18	7.8%	А			
12	5.1%	0			
11	4.7%	Z			
10	4.3%	V			
9	3.9%	Х			
7	3.0%	G			
6	2.6%	С			
5	2.1%	F			
5	2.1%	K			
4	1.7%	М			
4	1.7%	U			
4	1.7%	В			
3	1.3%	R			
3	1.3%	J			
2	0.9%	Ν			
1	0.4%	E			
1	0.4%	Р			
0	0%	D			
0	0%	Q			
0	0%	Т			
	# times 28 22 22 19 19 19 18 18 12 11 10 9 7 6 5 5 4 4 4 4 3 3 2 1 1 0 0 0	# times%28 12.1% 22 9.5% 22 9.5% 19 8.2% 19 8.2% 18 7.8% 12 5.1% 11 4.7% 10 4.3% 9 3.9% 7 3.0% 6 2.6% 5 2.1% 4 1.7% 4 1.7% 4 1.7% 3 1.3% 2 0.9% 1 0.4% 0 0% 0 0%			

Full	Ciphe	rtext	Eng	lish
Letter	# times	%	Letter	%
L	84	7.5%	е	12.7%
S	79	7.0%	t	9.1%
Н	68	6.0%	а	8.2%
Y	66	5.9%	0	7.5%
<u> </u>	64	5.7%	i	7.0%
W	58	5.2%	n	6.7%
Α	55	4.9%	S	6.3%
0	52	4.6%	h	6.1%
Z	52	4.6%	r	6.0%
V	51	4.5%	d	4.3%
Х	46	4.1%	I	4.0%
G	43	3.8%	С	2.8%
С	42	3.7%	u	2.8%
F	42	3.7%	m	2.4%
K	39	3.5%	W	2.4%
М	38	3.4%	f	2.2%
U	35	3.1%	g	2.0%
В	34	3.0%	у	2.0%
R	28	2.5%	р	1.9%
J	25	2.2%	b	1.5%
Ν	25	2.2%	V	1.0%
E	23	2.0%	k	0.8%
Р	21	1.9%	j	0.2%
D	19	1.7%	х	0.2%
Q	19	1.7%	q	0.1%
Т	16	1.4%	Z	0.1%

Calculate $\sum_{i=0}^{25} p_i^2$.

English: 0.065 Ciphertext: 0.045 Every 5th letter: 0.070

This does seem like English. The key must be 5 letters long.

If "L" = "e", shift is 7 letters.

Vigenère Example Decoded

tobeo	rnott	obeth	atist	heque	stion	wheth	ertis	noble	rinth	emind
tosuf	fethe	sling	sanda	rrows	ofout	rageo	usfor	tuneo	rtota	kearm
sagai	stase	aoftr	ouble	sandb	уорро	singe	ndthe	mtodi	etosl	eepno
morea	ndbya	sleep	tosay	weend	thehe	artac	heand	theth	ousan	dnatu
ralsh	ockst	hatfl	eshis	heirt	otisa	consu	mmati	ondev	outly	tobew
ished	todie	tosle	eptos	leepp	ercha	nceto	dream	ayeth	erest	herub
forin	thats	leepo	fdeat	hwhat	dream	smayc	omewh	enweh	avesh	uffle
dofft	hismo	rtalc	oilmu	stgiv	euspa	useth	erest	heres	pectt	hatma
kesca	lamit	yofso	longl	ifefo	rwhow	ouldb	earth	ewhip	sands	corns
oftim	etheo	ppres	SOrsw	rongt	hepro	udman	scont	umely	thepa	ngsof
dispi	sedlo	vethe	lawsd	elayt	heins	olenc	eofof	ficea	ndthe	spurn
sthat	patie	ntmer	itoft	hunwo	rthyt	akesw	henhe	himse	lfmig	hthis
quiet	usmak	ewith	abare	bodki	nwhow	ouldf	ardel	sbear	togru	ntand
sweat	under	awear	ylife	butth	atthe	dread	ofsom	ethin	gafte	rdeat
htheu	ndisc	overe	dcoun	tryfr	omwho	sebou	rnnot	ravel	lerre	turns
puzzl	esthe	willa	ndmak	esusr	ather	beart	hosei	llswe	havet	hanfl
ytoot	herst	hatwe	known	otoft	husco	nscie	ncedo	esmak	ecowa	rdsof
usall	andth	usthe	nativ	ehueo	freso	lutio	nissi	cklie	doerw	ithth
epale	casto	fthou	ghtan	dente	rpris	esofg	reatp	itcha	ndmom	entwi
ththi	srega	rdthe	ircur	rents	turna	wryan	dlose	thena	meofa	ction
softy	ounow	thefa	iroph	elian	ymphi	nthyo	rison	sbeal	lmysi	nsrem
ember	d									

Calculate frequencies for letters in position $i \mod 5$ to determine the full key: "house"

Summary of attack:

- I. For each candidate key length t, tabulate the frequency of the ciphertext characters in position $1 \mod t$.
- 2. For each t, calculate $\sum_{i=0}^{25} p_i^2$ where p_i is the frequency of letter i.
- 3. Keep going until you find a t for which this sum is close to 0.065.
- 4. Set s=t and calculate frequencies for each position $j \mod s$. Use these to deduce the shift for j and thus the key.

For a single value of t and a message of length n, steps 1-3 take O(n/t) steps. We need to try different values of t up to t=s, so steps 1-3 take a total of $O(\sum_{t=0}^{s} n/t) = O(n \log s)$ steps. Step 4 takes O(s n/s) = O(n) steps.

However, if n is very large, we don't need to tabulate the frequency of letters throughout the whole message to learn the key; we only need to look at enough to have good statistics.

How Much Text do We Need?

We tabulate the frequency of letters in position $j \mod s$, so we need enough such letters that the distribution is close to that of the language in use. This is just a constant, independent of n and s. The example has a bit over 1000 characters in total and s=5, so it seems around 200 characters is sufficient. You could probably go a bit lower but you might have to do some additional guessing as to which shift was best.

This means the attack works for messages with

n/s > 200 or n = O(s)

Since we need to look at a constant number of characters for value of t, the total time for the attack is then just O(s) as well.

Note: the time of the attack and the amount of text needed scale with s. s is a security parameter.

If we make s very large, comparable to the message size, this attack stops working. For instance, some people used a book as the key: Alice and Bob would agree on the book and a starting point in the book. The sequence of letters in the book beginning from that point give the shifts for the Vigenère cipher.

So, is the Vigenère cipher secure when using a book as a key?

If we make s very large, comparable to the message size, this attack stops working. For instance, some people used a book as the key: Alice and Bob would agree on the book and a starting point in the book. The sequence of letters in the book beginning from that point give the shifts for the Vigenère cipher.

So, is the Vigenère cipher secure when using a book as a key?

Well ... not if you can identify the book.

And even if you can't, there is still a pattern you can attack. In particular, the key is also text in English (or whatever language) and therefore has uneven distribution of letters. This means that certain (key, plaintext) combinations are more likely. For instance, if you see ciphertext "l", there is a good chance it is "e" encrypted with key "e". This creates an avenue of attack — and you can work on determining the text of both the key and the message.

Is the one-time pad secure?

Is the one-time pad secure?

Yes!

How can we know this? Maybe it's just that no one has figured out yet how to attack it.

Is the one-time pad secure?

Yes!

How can we know this? Maybe it's just that no one has figured out yet how to attack it.

This is where security proofs come into play.

We can prove that the one-time pad is secure

Is the one-time pad secure?

Yes!

How can we know this? Maybe it's just that no one has figured out yet how to attack it.

This is where security proofs come into play.

We can prove that the one-time pad is secure

... but first we need to define what it means for a cryptographic protocol to be secure.

Towards a Definition of Security

With the substitution cipher, we saw that having different frequencies for different ciphertext letters allowed frequency analysis. So maybe our security definition should say that all ciphertext letters should occur with the same frequency?

With the substitution cipher, we saw that having different frequencies for different ciphertext letters allowed frequency analysis. So maybe our security definition should say that all ciphertext letters should occur with the same frequency?

No.

Imagine the Vigenère cipher with key "abcdefghijklmnopqrstuvwxyz": Every letter would have the same frequency in the ciphertext, since it could be shifted by any amount, but it would still be insecure.

Conversely, take a "secure" protocol (whatever that is), and alternate the ciphertext letters with additional letter "A"s. This would not make the protocol any less secure, but now "A" is very common.

Independence From the Plaintext

Adding extra "A"s doesn't impede security because they are there regardless of what the message is. That's the answer: A definition of security should have the ciphertext *independent* of the plaintext.

One-time pad

Plaintext:	hellothere	goodbyenow
Key:	xfaycrsegf	yvxgpmvvjn
Ciphertext:	EJLJQKZIXJ	EJLJQKZIXJ

The ciphertext "EJLJQKZIXJ" could correspond to either the message "hellothere" or "goodbyenow" with different keys. Exactly one key works for each plaintext and both keys are equally likely (since all keys are) and therefore both messages are equally possible.

Recall that Eve is allowed to use any side information she might have about Alice and Bob's messages or protocol. She doesn't know the precise message sent and she doesn't know the key, but she might know a lot more.

Eve might have narrowed the message down to two possibilities m and m'. She should still not be able to tell which is the two was sent when she sees the ciphertext.

Eve might be 90% sure that the message is m and not m'. She should not be able to increase that to 95% sure.

We can quantify Eve's prior knowledge about the message using probability theory.

Eve's estimate of the probability that the message is m before she sees any ciphertext is

 $\operatorname{Prob}(M = m)$

Conditional Probability

What happens once Eve sees the ciphertext?

She now has (potentially) additional information. Given that she knows the protocol (Kerckhoffs' principle), including the distribution over keys, she can deduce the probability that if the message is m then the ciphertext is c averaged over keys.

 $\Pr(C = c \mid M = m)$

How should she update her probability of the message once she sees the ciphertext c?

Use Bayes' Theorem:

$$Pr(M = m \mid C = c) = \frac{Pr(C = c \mid M = m)Pr(M = m)}{Pr(C = c)}$$

Definition of Encryption

Definition: A private-key encryption protocol is a set of three probabilistic algorithms (Gen, Enc, Dec).

- Gen is the key generation algorithm. It takes as input s, the security parameter, and outputs a key $k \in \{0,1\}^*$.
- Enc is the encryption algorithm. It takes as input k and a plaintext or message $m \in \{0,1\}^*$ and outputs a ciphertext $c \in \{0,1\}^*$.
- Dec is the decryption algorithm. It takes as input k and c and outputs some $m' \in \{0,1\}^*$.

An encryption protocol is correct if

Dec(k, Enc(k, m)) = m

Unless otherwise stated, assume that Gen(n) chooses a random bit string of length s. Note that there may be some restrictions on the allowed space of messages (e.g., length).

The One-Time Pad for Bits

In the modern era, we have computers to do encryption and decryption, and so we like to write things in terms of bits. We can convert a message m written with letters into a message written in bits by converting it to ASCII (for instance).

Note that in the pre-computer era, encrypted messages usually dropped the spaces (because information about where they were makes a message much easier to decrypt), but in the modern era, "space" is just another character and is encrypted along with everything else.

The key k is a random string of bits, and Enc takes the bitwise XOR between the key and message. Dec does the same:

Message	001011001010
Key	110001011100
Ciphertext	111010010110

Correctness of the One-Time Pad

It is straightforward to prove that the one-time pad is correct:

We can write Enc and Dec as

 $Enc(k,m) = m \oplus k$

 $Dec(k,c) = c \oplus k$

Then:

 $Dec(k, Enc(k, m)) = (m \oplus k) \oplus k = m$